
BERNARD GATES

A PITCH-CLASS SET SPACE ODYSSEY, TOLD BY WAY OF A

HEXACHORD-INDUCED SYSTEM OF GENERA

I. Surveying the Landscape, Setting the Scene

In this article, I aim to explore how a new system of pitch-class set genera could
be formulated and graphically illustrated. Taking the systems of Allen Forte,
Tore Eriksson and Richard S. Parks as a starting point, I briefly examine their
approaches and limitations and suggest a method of moving forward from their
seminal work. I present this study metaphorically as a ‘space odyssey’, traversing
a number of stages whose narrative journey is mapped out in Fig. 1.

To date, the only published pitch-class set genera system to incorporate
significant elements of intersection between its genera has been that of Allen
Forte.1 Two other methods, published around the same time, did not achieve
this specific condition: Eriksson’s ‘regions’ incorporated all set classes, but with
only limited linkage between them, and Parks’s theory relied solely on analytical
context, with no preordained genera.2 Forte’s stance showed predictable insight
and persuasion but was uncompromising in its approach. He stressed that his
twelve genera were deliberately ‘context insensitive’ and purposely celebrated the
consequent widespread location of familially linked set classes across them.3

From ‘very elementary and simple premises’ he created a metaphorical ‘spec-
trum’ across his genera, from ‘diatonic’ (genera 11 and 12) to ‘exotic’ (genera 1,
2 and 3), through which subsets of familiar scale configurations and other
categories such as aggregate or set-complex groupings were scattered or pris-
matically filtered.4 Whereas Parks said of his own method that ‘[i]t is likely that
each repertoire will require its own genus-models for achieving a “good fit” ’,
Forte emphasised that ‘no such constraint exists in the case of my pitch-class
set genera, which are abstract and unattached to any particular harmonic
vocabulary’.5

It is now more than twenty years since Forte and Parks introduced their
theories, and fourteen since the last flurry of interest in the use of their methods
for the analysis of twentieth-century music.6 This general neglect may be due in
part, in Forte’s case, to the need for a complex application of rules and ‘differ-
ence quotients’, and, in Parks’s case, to the prerequisite need for his genera to be
created anew for each discrete piece or repertoire. But a more fundamental
obstacle stems from the structure of the theories themselves, their large number
of genera and Forte’s determination to initiate his genera inclusionally from a
trichordal base.7 These preconceptions lead to unwieldiness, on account of high
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levels of genus membership. In Forte’s case, the initial premises also resulted in
high levels of intersection between genera, and also in such a skewing of set-class
cardinalities that instances of trichords and tetrachords became restricted to
between one and nine set classes per genus, while counts of pentachords and
hexachords in many cases exceeded half of all those available. Further, this high
saturation of pentachords and hexachords resulted in a ‘disappointingly small’
assignment of any of these set classes to just one genus.8

Building on ideas initially formulated in my PhD thesis, I am inclined to turn
Forte’s process on its head by initiating genera from a hexachord base, thereby
relegating trichords to a more subsidiary generative role.9 In this way I hope to
instigate a method of genus categorisation that is akin to Eriksson’s but with a
more workable genus size, and that has a better numerical spread of set classes
across the cardinalities and a more balanced degree of membership across the
genera than Forte’s system allowed, thus enhancing the possibility of coherent
analytical practice.

What follows will be an attempt to elaborate these approaches while taking on
board studies that have clarified the role played by similarity measures in the
recognition of set-class difference and affinity. These latter inquiries have
involved the development of a wide range of computationally derived similarity
measures, typically consisting of indices of scaled values obtained through a
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comparison of pairs of numbers representing set classes. Some of these similarity
measures have been based on interval-class vector analysis, such as Robert
Morris’s ASIM equivalences, Eric J. Isaacson’s IcVSIM and Michael Buchler’s
SATSIM, while others have looked at subset and superset inclusional relations,
such as David Lewin’s REL, John Rahn’s ATMEMB and Marcus Castrén’s
RECREL.10 Subsequent comparative studies of these similarity measures by Ian
Quinn, Thomas R. Demske and Art Samplaski have shown that similar taxo-
nomic results can be produced from both types of procedure and that structural
commonalities are evident between most, if not all, of the individual methods.11

Multi-dimensional scaling, a dimensionality-reduction technique, has aided the
visualisation of these set-class relations in terms of distance and how dissimilar
(far apart) or similar (close together) they might be.12 Allied to this practice is
Quinn’s concept of ‘fuzzy’ relations, which has defined set classes in terms of the
degree of membership they possess in relation to prototypical sets within pre-
scribed regions.13 Further to this, cluster analysis has allowed a more refined
classification of set classes into regions displaying these set classes’ intrageneric
affinity. Quinn’s application of this method has allowed him to incorporate all set
classes of cardinals 3, 4 and 5 into clusters corresponding to the six interval
classes, a process that has produced results not dissimilar to those of Eriksson.14

While the course of action adopted in this article follows a non-computational
(yet still logical or algorithmic) path, the evidence from these scaled similarity
measures, and from the ensuing comparative studies, will be invoked at a later
stage as a means of confirming and to some extent fine-tuning the graphical
representation of the proposed system of genera.

A different way of viewing similarity relations, based on voice leading, has
recently been pursued by Joseph N. Straus, as well as Clifton Callender, Ian
Quinn and Dmitri Tymoczko.15 Little reference will be made to these studies in
this article, however.16 I will argue that since voice-led similarity is a concept
primarily correlated to the smooth and efficient (by interval class 1 or 2)
movement of parts, as is typically found in traditional Western forms of music,
a different course should be followed when the primary concern is that all
harmonic types and any intervallic form of melodic movement of parts (i.e. all
displacements or transformations of one set class into another by any interval
class) should be considered as being of equal potential value.17 This latter
course is desirable in that it allows us to embrace significant parts of the
twentieth-century repertoire, where composers intentionally admitted the
full gamut of dissonant harmonies (as well as consonant ones) and wider
and less predictable intervals (as well as smoother ones). It will become
apparent in due course that the intrageneric and cross-generic similarities
suggested by this article are different in kind to voice-led similarities.18 Straus’s
comprehensive arrays of ic 1 voice leadings for each cardinality, induced from
set classes’ prime forms, and Quinn’s ic 1 array of tetrachords, induced
from the ic 1 Fourier balance, both demonstrate an affinity dimension ranging
from maximally compact and chromatically clustered to maximally even and
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anti-chromatic.19 Consequentially, this affinity dimension inconveniently
gathers most of the maximally dissimilar (in terms of interval-class vector)
prototypical hexachords into the (terminal) maximally even camp. This runs
counter to my preferred option for similarity progressions, which would
proceed unilaterally, within each individual genus type, thus preserving the
archetypal status of the prototypes while still allowing bilateral or multilateral
affinities to emerge.

This article departs from previous studies in several ways. Fundamental to the
enterprise is a system of genera which I first introduced in 1999 and which is
based on six natural categories or scales and around six maximally dissimilar
hexachords: the chromatic set class 6–1 (0,1,2,3,4,5), the diatonic 6–32
(0,2,4,5,7,9), the hexatonic 6–20 (0,1,4,5,8,9), the ‘bichromatic’ 6–7
(0,1,2,6,7,8), the whole-tone 6–35 (0,2,4,6,8,10) and the octatonic 6–30
(0,1,3,6,7,9).20 Instrumental to the selection of membership in each genus is a
system of set-class linkage based on inclusional relations proceeding from one
cardinality to an adjacent cardinality, which I shall call ‘inclusional growth
chains’ or ‘IG chains’.21 Following the examples of Eriksson and Quinn, I adhere
to a hierarchical and reductional process, although the ‘groups/pitch-class sets/
set classes/genera’ lineage will be taken one step further to the ultimate stage of
affinity representation.22 Inherent in this approach, however, will be one or two
backtracking avenues of expansion. One of these will be the development of
bonded inclusional growth (BIG) chain schemata as a means of creating genus
membership. Others will be the creation of interval-class vector scalings for each
genus as a means of establishing set-class affinity, as a measurement of distance,
and for the establishment of intrageneric and intergeneric relations across the
cardinalities.These scalings and intersections will help to locate all set classes in
a set-class space, even those that have previously proved difficult to pin down.23

Central to this endeavour will be a commitment to fundamental assumptions
about the validity and reality behind pitch-class set or set-class equivalence, as
well as a pragmatic stance on what characterises generic types and what might
instinctively or implicitly be perceived to be resemblance within and between
generic types. In this, I am following Quinn’s belief in the theorist’s capacity for
developing ideas intuitively, although I lean rather more than Quinn does
towards valuing and incorporating ad hoc solutions instead of rigidly and exten-
sively argued abstract notions.24 Aspects of symmetry will emerge as natural
elements within the genera and will reappear as an overriding feature of the
graphical representation of the genera in three-dimensional space.While Straus’s
arrays clearly have a spatial aspect to them, and Callender, Quinn and Tymoc-
zko’s ‘quotient spaces’ and ‘global-quotient orbifolds’ emerge naturally out of the
forms of mathematical modelling that they are using – and, it might be added,
while the multidimensional scaling of similarity measures translates theoretically
into three or more spatial dimensions – my approach is deliberately non-
mathematical and aims to create a more informal spatial model which can
nevertheless show generic and distance relations between all set classes simply
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and at a glance, at once both comprehensive and comprehensible. Quinn has
proposed that such a structure should incorporate overlapping regions based on
contrasting genera and suggests a number of desiderata for such a design which
I intend to adopt.25 These desiderata can be summarised as the following key
criteria (with my clarifications of Quinn’s terms in square brackets):

1. that ‘chord quality’ [the quality which defines set classes and their rela-
tional location in ‘quality space’] should take account of closely and dis-
tantly related sonorities [pitch-class sets] (p. 115);

2. that ‘quality space’ [a unified and regulated spatial model showing closely
and distantly related sonorities or set classes] should be determined by
similarity relations through the (computational) application of a numerical
index (translatable as a spatial distance metric), and/or by a ‘hierarchical
taxonomy’ of species [set classes] or genera (p. 115);

3. that theorists ‘will present a relatively simple procedure that generates a
whole system’ (p. 115);

4. that the degree of similarity between sonorities [pitch-class sets] should
relate to distances between them in ‘quality space’ (p. 115);

5. that set classes belonging to a single genus ‘would lie near one another in
quality space’ (intrageneric affinities), and that the system as a whole would
accommodate overlapping regions (intergeneric affinities) (pp. 115 and
121);

6. that ‘quality space’ should emerge from assumptions about the nature of
‘chord quality’, such as ‘common tones’ [pitch-class and pitch-class set
affinity], inclusivity and combinatoriality (pp. 116 and 118);

7. that account should be taken of ‘an abstract [generalised] notion of chord
quality, in which quality is something that inheres in equivalence classes of
chords’ [‘species’ or set classes] such as transpositional, inversional and
multiplicational equivalence and complementation, interval content
[interval-class vector ‘profile’], subset structure and transformational sym-
metries (pp. 119–21; emphasis in original);

8. that ‘higher order taxonomic categories or genera [should be] organised
around privileged, highly symmetric chord species’ [set classes] or ‘proto-
types’ which are ‘quite distant from one another in quality space’ (p. 121);
and

9. that intrageneric and intergeneric affinities should be structured through
qualitative closeness (similarity) or distance (difference) in ‘quality space’
to or from the designated genus prototypes (p. 121).

In its attempt to meet each of these stringent conditions, this exploration will
make a progressive journey through the domains of set-class attribution and
association in order finally to arrive at a three-dimensional representation of
set-class space.
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II. Setting Off with Ground Rules for Navigation: the Establishment of
Six Categories and Their Hexachordal Prototypes

Classificational endeavours have often started with an examination of sym-
metrically and transpositionally invariant set classes built from the six interval
classes, and of the larger scales or aggregate collections derived from them. My
intention to demote smaller set classes as initial candidates for the creation of
set-class genera may strike the reader as controversial. After all, the six interval
classes themselves have traditionally been seen as fundamental to the process
of generation and categorisation, dating back to Howard Hanson’s extensional
procedures (Fig. 2) and continuing through Eriksson’s somewhat later inves-
tigation into ‘maximising’ the interval classes, Forte’s superset extensions of his
trichordal representations of the interval classes, Buchler’s theory of i-set
(saturation of an interval class) resemblances, Quinn’s more recent considera-
tion of ‘intervallically constituted genera’ and Justin Hoffman’s interval-class
displacement cycles.26 But Eriksson has shown that natural categories or
scales, as represented by Hanson’s six ‘great categories’ and Eriksson’s own six
‘regions’, can sometimes be induced from more than just one interval class.27

It therefore seems necessary to make a distinction at the outset between
interval classes’ being of no particular use as generators but being of more
general use as pointers towards genus membership. This distinction allows the
significance of relative balance between the six interval classes to be brought
into focus, as demonstrated within any initiatory set class’s interval-class
vector.

Quinn nominates all of the set classes in Fig. 2 as tentative genus prototypes
for each of Hanson’s six interval-class projections but ultimately opts for a
smaller group of maximally even primary prototypes. These include a distinctive
pattern of one primary prototype per cardinality per genus, that is, the ‘bichro-
matic’ 2–6 (0,6) from the ic 6 projection, the hexatonic 3–12 (0,4,8) from the ic
4, the octatonic 4–28 (0,3,6,9) from the ic 3, the diatonic 5–35 (0,2,4,7,9) from
the ic 5, the whole-tone 6–35 (0,2,4,6,8,10) from the ic 2 and the chromatic
12–1 (0,1,2,3,4,5,6,7,8,9,10,11) from the ic 1.28 I would like to distance myself
from the prevalent view that these maximally even set classes act for genera in
some unique way, and that the anti-prototypical extreme necessarily has to mean
maximally compact set classes. A somewhat bizarre consequence of this assump-
tion is that, as a matter of principle, just one maximally even set class per
cardinality (together with its complement) might somehow typify each genus.
Another consequence is that an opportunity to present intergeneric similarity
relations is lost.29 A more apposite set-class attribute for genus prototypicality
surely ought to be distributional regularity, a feature concomitant with either
inversional or transpositional combinatoriality or invariance. This quality would,
as a consequence, admit prototypical candidates of minimal or equivocal even-
ness such as 6–20 (0,1,4,5,8,9), 6–30 (0,1,3,6,7,9), 6–7 (0,1,2,6,7,8) and 6–1
(0,1,2,3,4,5).
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I would argue that while generic, incrementally sequenced set classes such as
Hanson’s projections (see again Fig. 2) and Eriksson’s maxpoint structures (his
ex. 2) have been built upwards from the interval classes, they can just as plausibly
be viewed as having been built outwards from a centrally placed platform of
hexachords. Such an approach has generally been ignored as a source of gen-
eration, despite the potential benefit to be gained from hexachords’ strategic
standing at the centre of many systematically built symmetrical IG chains and
their pivotal role in other types of relational IG chains as well, as will be shown
later. Indeed, the use of ‘famous’ hexachords, that is, the all-combinatorial 6–1
(0,1,2,3,4,5), 6–32 (0,2,4,5,7,9), 6–20 (0,1,4,5,8,9), 6–35 (0,2,4,6,8,10), 6–7
(0,1,2,6,7,8) and 6–8 (0,2,3,4,5,7), together with the part-combinatorial 6–27
(0,1,3,4,6,9) and 6–30 (0,1,3,6,7,9), as possible genus representatives seems to
be implied by Quinn in his discourse on hexachordal similarity relations.30

Moreover, seven of these eight ‘famous’ hexachords are centrally placed in
Eriksson’s series of maxpoint set types and in Buchler’s ‘cyclic sets in 12 pc
space’, and six of them feature in Hanson’s projections (see again Fig. 2).31 Each
hexachord in these sequences is strategically placed at its centre but is also in a
sense terminal, since it occupies the point of reflection and symmetry between
the smaller set classes and their larger complements.32 If we consider the par-
ticular component of each projection that best matches its intuitive name, it
becomes clear that hexachords predominate over other cardinalities. They are
present in at least two of the projections, the (0,2) and (0,4), as the six-note
whole-tone and hexatonic scales, and possibly in a third, since set class 6–7
(0,1,2,6,7,8) is the perfectly formed, all-combinatorial central element within
the (0,6) ‘bichromatic’ projection. There is certainly a practical advantage in
restricting prototypicality to a single cardinality so that operations and compari-
sons can work across the genera on a level playing field. The hexachords under
consideration represent the only cardinality that exclusively epitomises all six of
the tentative genera. They also specifically comply with certain basic cognitive
characteristics of familial categorisation, share a neutral and common organisa-
tional level (i.e. they show equivalent cardinality) and present recognisable
identities and mental images (i.e. they equate to ‘pentatonic’, ‘diatonic’, ‘chro-
matic’, ‘hexatonic’, ‘whole-tone’, etc.).33 The inversionally or transpositionally
invariant hexachords that have already emerged as part of Hanson’s projections
(Fig. 2), Eriksson’s ‘maxpoints’ and Buchler’s ‘cyclic sets in 12 pc space’ are 6–1
(0,1,2,3,4,5), 6–32 (0,2,4,5,7,9), 6–20 (0,1,4,5,8,9), 6–7 (0,1,2,6,7,8), 6–35
(0,2,4,6,8,10), 6–27 (0,1,3,4,6,9) and 6–30 (0,1,3,6,7,9).34 All but one of these
are representative of distinct but accessible and familiar scales or aggregates
which can now be formalised by lending their names to five of the potential
‘intuitive’ genera. These are the chromatic genus (represented by 6–1), the
diatonic (represented by 6–32), the hexatonic (represented by 6–20), the whole-
tone (represented by 6–35) and the octatonic (represented by 6–27 and/or
6–30).35 The remaining prototypical hexachord, 6–7 (0,1,2,6,7,8), represents
the sixth, as yet unnamed genus: I am proposing the name ‘bichromatic’ for this
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potential genus, since its prime form (0,1,2,6,7,8) can be partitioned into two
(transpositionally combined) chromatic segments a tritone apart, that is, (0,1,2)/
(6,7,8) or, alternatively, into three chromatically spaced tritones, that is, (0,6)/
(1,7)/(2/8).36

For the working out of further membership of these genera and as an amel-
iorative force for both facilitation and constraint, I therefore propose that the six
hexachords offered earlier as representatives of the six ‘intuitive’ genera should
henceforth act as primary genus prototypes for these six genera (Table 1). These
correspond largely to Hanson’s six projected hexachords, with one exception:
my preferred octatonic representative would be 6–30 (0,1,3,6,7,9), rather than
Hanson’s (0,3) projected 6–27 (0,1,3,4,6,9). There are three reasons for my
choice. Firstly, set class 6–30 has transpositional invariance, while 6–27 has
neither transpositional nor inversional invariance. Secondly, 6–30 has fewer
pentachordal subsets, three as against 6–27’s five, an attribute which will ulti-
mately act as a guard against high octatonic genus membership (as elsewhere will
6–20’s one pentachordal subset, 6–7’s two, 6–35’s one, 6–32’s three and 6–1’s
three). Thirdly, 6–30 has cyclically distributed elements of its prime form (i.e. a
three-way combination of instances of ic 6 displaying the cyclic interval pattern
1–2–3–1–2–3), just as the octatonic scale (0,1,3,4,6,7,9,10) and three other
octatonic subsets, 4–28 (0,3,6,9), 4–9 (0,1,6,7) and 4–25 (0,2,6,8), have cyclic
interval patterns. Indeed, an examination of 6–30’s prime form confirms that this
prototypical octatonic hexachord also ideally ‘contains’ as subsets all of these
three symmetrical tetrachords: (0,1,3,6,7,9), (0,1,3,6,7,9) and (0,1,3,6,7,9).37

To sum up, each of the six prototypical hexachords is distributionally
regular, has a small number of subsets and has a transpositional and/or inver-
sional redundancy built into its structure (all are all-combinatorial except
6–30). Each can nevertheless ‘represent’, if need be, each one of Quinn’s maxi-
mally even primary prototypes from Hanson’s projections, that is, set class 6–7
for 2–6 (10–6), 6–20 for 3–12 (9–12), 6–30 for 4–28 (8–28), 6–32 for 5–35
(7–35), 6–35 for itself and 6–1 for 12–1. Each is maximally dissimilar to the
other five, and indeed to all other hexachords, in terms of the uniqueness of its
interval-class vector content across two or more interval classes, allowing it to
occupy a distant, lonely place in the set-class universe. Table 2 lists these

Table 1 Genus prototypical hexachords, their prime forms and interval-class vectors

Genus Hexachordal prototype Prime form Interval-class vector

Hexatonic 6–20 (0,1,4,5,8,9) [303630]
Bichromatic 6–7 (0,1,2,6,7,8) [420243]
Octatonic 6–30 (0,1,3,6,7,9) [224223]
Whole-Tone 6–35 (0,2,4,6,8,10) [060603]
Diatonic 6–32 (0,2,4,5,7,9) [143250]
Chromatic 6–1 (0,1,2,3,4,5) [543210]

88 BERNARD GATES

Music Analysis, 32/i (2013)© 2013 The Author.
Music Analysis © 2013 Blackwell Publishing Ltd



unique features.38 Clearly, these six prototypical hexachords display exceptional
intervallic features that distinguish them as exemplars for their respective
generic regions. As a manifest group, they conform wholly with, or equate
closely to, those companies of set classes set aside as being special (and espe-
cially different) by several other theorists. These include Tenkanen’s ‘strangest’
or ‘cornerstone’ hexachords (6–35, 6–20, 6–7, 6–30, 6–32 and 6–1), Joliffe’s
‘best discriminator’ hexachords (6–35, 6–1, 6–7, 6–20, 6–32 and 6–30A/B),
Eriksson’s ‘maxpoint’ sets (whose hexachord representatives are 6–1, 6–32,
6–7, 6–20, 6–35 and 6–27), the pivotal hexachords in Buchler’s ‘cyclic sets in
12 pc space’ (6–1, 6–35, 6–27, 6–20, 6–32, 6–7 and 6–30) and several of
Quinn’s tentative prototypes.39 Quinn calls prototypicality ‘the limit case’ of a
generic property that lies spatially in a ‘remote’ ‘population center’ as ‘distant’
‘landmarks’; Eriksson similarly places several of his maxpoint hexachords at
the extremes of his regions in a diagram incorporating ‘M-structure’;
Tenkanen comes to the same conclusion, that set classes such as these occupy
the farthest and remotest points in set-class space – that through their unique-
ness they occupy distant bastions of differing typicality, thus satisfying key
criterion 7.40 The effect that these points of control can have on the spatial
location of all other set classes will be visited in the final part of this study.

III. Moving On with a Methodology for the Foundation of a Balanced
and Workable Society of Pitch-Class Set Genera: an Exploration of
Ordered Trichordal Inclusional Cells and Combination Interval
Cycles, Encounters with Six Hexachord ‘Families’ and the
Establishment of a Lexicon of Bonded, Inclusionally Built
Growth Chains

The journey towards grouping set classes into opposed but interlocking soci-
eties can start with a consideration of the role of trichords in creating identi-
fiable groups before we move on to the more crucial role played by hexachords
in establishing these larger communities. If the six interval cycles themselves
are to be bypassed, as being of ambiguous use as progenitors, then ordered
forms of the twelve trichordal set classes might offer a more productive point
of departure and first frontier for this odyssey, since they at the very least have
a clearer relationship to the six pilot genus regions than do the interval classes
themselves. Ostensibly, a venture commencing from trichords might seem akin

Table 2 The unique interval-class vector features of the six genus prototypes

6–20 [303630] (hexatonic) highest ic 4 lowest ics 2 and 6
6–30 [224223] (octatonic) 2nd-highest ic 3, highest ic 6 evenly distributed ics 1, 2, 4 and 5
6–35 [060603] (whole-tone) highest ics 2, 4 and 6 lowest ics 1, 3 and 5
6–32 [143250] (diatonic) highest ic 5 2nd-lowest ic 1, lowest ic 6
6–1 [543210] (chromatic) highest ic 1 2nd-lowest ic 5, lowest ic 6
6–7 [420243] (bichromatic) highest ic 6, 2nd-highest ics 1 and 5 lowest ic 3
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to Forte’s approach, since he built genera with similar intuitive names such as
‘chroma’, ‘dia’, ‘whole-tone’, ‘atonal’, ‘diminished’ and ‘augmented’.41

However, rather than working from the twelve trichordal set classes per se, I
would like to survey the wider field of ordered trichordal intervallic cells
(which I will refer to as OTICs) or three-note motivic shapes as a source for
investigation, in order to find additional ways of building generically beyond
Hanson’s projections and Eriksson’s maxpoints. Since arithmetically there are
36 different ways of summing two integers of between 1 and 11 to totals of
between 2 and 12, so there are 36 OTICs which can be formed from different
combinations of two intervals of between interval 1 (the minor second) and
interval 11 (the major seventh) within the twelve-note chromatic scale. Table 3
shows a listing of these 36 interval sums. The six interval sums equalling 12 (1
+ 11, etc.) can be set aside since they produce dyadic pitch-class sets rather
than trichordal ones, caused by the replication of a pitch at the octave. This
leaves just 30 distinct OTICs. Each can be taken to represent transpositional
and inversional forms of itself, but it has to remain ordered.42 The 30 a priori
OTICs are intimately connected to precisely 30 distinct combination (interval)
cycles, that is, cycles that are generated from two overlapping forms of one
particular interval cycle or from alternations of two different intervals.43

Table 3 can be reformulated as Table 4 to show how each OTIC correlates
one-to-one with the serially and continually repeating trichordal element
within each of the combination cycles.44

Now that a specific relationship between OTICs and combination cycles has
been established, further set classes of higher cardinality can be identified and
placed within a larger generational context. These are shown in Table 5.45

Column 1 of Table 5 shows each combination cycle and its own distinctive
OTIC.46 Column 2 sets out each pitch- and interval-class pattern, with the
second (offset) interval cycle shown in bold. Column 3 gives the set-class name
of each OTIC. It can be seen that there are three versions each of set classes 3–2
(0,1,3), 3–3 (0,1,4), 3–4 (0,1,5), 3–5 (0,1,6), 3–7 (0,2,5), 3–8 (0,2,6) and 3–11

Table 3 The 36 ordered trichordal intervallic cells (OTICs) having interval sums of
between 2 and 12 (the 36 ways of summing two integers of between 1 and 11 to
totals of between 2 and 12)

Intervals 1 + 1 Intervals 2 + 2 Intervals 3 + 3 Intervals 4 + 4 Intervals 5 + 5 Intervals 6 + 6
Intervals 1 + 2 Intervals 2 + 3 Intervals 3 + 4 Intervals 4 + 5 Intervals 5 + 6
Intervals 1 + 3 Intervals 2 + 4 Intervals 3 + 5 Intervals 4 + 6 Intervals 5 + 7
Intervals 1 + 4 Intervals 2 + 5 Intervals 3 + 6 Intervals 4 + 7
Intervals 1 + 5 Intervals 2 + 6 Intervals 3 + 7 Intervals 4 + 8
Intervals 1 + 6 Intervals 2 + 7 Intervals 3 + 8
Intervals 1 + 7 Intervals 2 + 8 Intervals 3 + 9
Intervals 1 + 8 Intervals 2 + 9
Intervals 1 + 9 Intervals 2 + 10
Intervals 1 + 10
Intervals 1 + 11
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(0,3,7), two versions each of set classes 3–1 (0,1,2), 3–6 (0,2,4), 3–9 (0,2,7) and
3–10 (0,3,6), and just one version of set class 3–12 (0,4,8). This distribution
reflects the trichords’ varying degrees of symmetry and/or transpositional invari-
ance. Column 4 shows the series of larger set classes of between four and twelve
members generated serially by each of the combination cycles (and by each of
the integral, overlapping OTICs). Looking at the second row – that is, the
interval-1 combination cycle, (2,9) (3,10) – by way of example, we can see that
the first generated tetrachord in column 4, 4–1 (0,1,2,3), unfolds serially from
the first element in column 2 (0,2,11,1) and then again from the third element
(11,1,10,0), and so on through the entire combination cycle, while the other
generated tetrachord, 4–3 (0,1,3,4), similarly unfolds serially from the second
element of the pattern (2,11,1,10) and then again from the fourth (1,10,0,9),
and so on through the entire cycle. All of the larger generated sets in all 30 rows
are derived in precisely the same way, from groups of contiguous elements of
differing cardinality within the patterns of column 2. Each completed row in
Table 5 therefore represents one basic OTIC and all of its larger generated sets,
which together form an IG chain. Although Table 5 as a whole demonstrates 30
IG chains in all, a few are the same, replicating part or all of Hanson’s projections
(see again Fig. 2) and Eriksson’s series of maxpoint set types (his ex. 2), and a
few others are nearly identical.47 What these patterns do show, however, is a
wider range of correlated set classes than is found in Hanson’s projections or
Eriksson’s maxpoint set types. This system of combination cycles therefore could
potentially form the basis of a system of genera.The designated (intuitive) genus
name for each type of correlated combination cycle (or each type of IG chain)
can therefore be given as in column 5 of Table 5. In summary, the combination
interval-1 cycles generate chromatic and bichromatic IG chains; the combination
interval-2 cycles generate chromatic, whole-tone and diatonic IG chains; the
combination interval-3 cycles generate purely octatonic IG chains; the combi-
nation interval-4 cycles generate hexatonic and whole-tone IG chains; the com-
bination interval-5 cycles generate diatonic and bichromatic IG chains; and the
combination interval-6 cycles generate bichromatic, octatonic and whole-tone

Table 4 The relationship between the 30 OTICs and the 30 combination interval
cycles

Combination
interval 1 cycles
(totalling 1 or
11, mod. 12)

Combination
interval 2 cycles
(totalling 2 or
10, mod. 12)

Combination
interval 3 cycles
(totalling 3 or
9, mod. 12)

Combination
interval 4 cycles
(totalling 4 or
8, mod. 12)

Combination
interval 5 cycles
(totalling 5 or
7, mod. 12)

Combination
interval 6 cycles
(totalling 6,
mod. 12)

(1,10) (2,11) (1,9) (3,11) (1,8) (4,11) (1,7) (5,11) (1,6) (6,11) (1,5) (7,11)
(2,9) (3,10) (2,8) (4,10) (2,7) (5,10) (2,6) (6,10) (2,5) (7,10) (2,4) (8,10)
(3,8) (4,9) (3,7) (5,9) (3,6) (6,9) (3,5) (7,9) (3,4) (8,9) (3,3) (9,9)
(4,7) (5,8) (4,6) (6,8) (4,5) (7,8) (4,4) (8,8) (1,4) (8,11)
(5,6) (6,7) (5,5) (7,7) (1,2) (10,11) (1,3) (9,11) (2,3) (9,10)

(1,1) (11,11) (2,2) (10,10)
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IG chains. This all correlates to those positive characteristic features identified
for each prototypical hexachord in Table 2. We can now begin to see a connec-
tion between the bichromatic area and the chromatic and diatonic ones, and
to appreciate the multiple generative roles played by each of the interval
classes.

Thus far, although this undertaking has tentatively assigned all six dyadic and
twelve trichordal set classes to one or more of the intuitive genera, relatively few
of the 29 tetrachords, 38 pentachords and 50 hexachords have been incorpo-
rated; clearly a fresh and far more rigorous approach will be required in order to
meet the need for set-class completeness and, beyond this, to provide the
possibility of worthwhile intergeneric intersection.48 We can begin this task by
instigating the creation of six hexachord ‘families’ to include all 50 of the
hexachordal set classes, so that each of them not only can provide the repre-
sentative hexachordal membership and backbone for each of the six intuitive
genera, but also can make provision, beyond this completeness, for some degree
of intergeneric overlap.

As a first step towards this goal, it will be helpful to look at one particular
aspect of the generated set classes in column 4 of Table 5, where we can see
that the cardinal 6 component of some of the IG chains extends beyond the six
designated prototypical hexachords to other hexachords via a common subset or
superset of adjacent cardinality.49 This inclusional aspect of similarity, that set
classes within any genus could have an ‘almost-the-same-as’ status through a
‘subset-of-prototype-plus’ or ‘superset-of-prototype-minus’ relational character-
istic, is a principle which can now be extended in order to to include all of the
hexachordal set classes. This approach will be followed throughout the ensuing
creative process in order to embrace those hexachords with the closest affinity to
each generic prototype. As a useful preliminary to this course of action, we can
look at the two principal combination interval-cycle patterns allocated to the
bichromatic system by Table 5: the interval-1 (5,6) (6,7) and the interval-5 (1,6)
(6,11). We can see that the hexachords present in these patterns, 6–7
(0,1,2,6,7,8), 6–Z6 (0,1,2,5,6,7) and 6–Z38 (0,1,2,3,7,8), all contain set class
5–7 (0,1,2,6,7). Thus we can say that, in these contexts, set class 5–7 conserves
the ‘bichromatic’ quality of each and serves to underpin two equivalent modifi-
cations to Hanson’s basic 6–7-centred projection (see again Fig. 2): 6–Z6 and
6–Z38 can be viewed either as minimal modifications of the bichromatic proto-
type, 6–7, or as maximally similar derivatives of it. Now, it transpires that all 44
of the non-prototypical hexachords, without exception, can be categorised in a
similar way, such that their prime forms are minimal modifications or maximally
similar derivatives of the prime forms of one or more of the six hexachordal
prototypes.50 It must be pointed out at this juncture that, although these modi-
fications are minimal in terms of common notes, the actual intervallic displace-
ment of one element is not necessarily minimal in voice-leading terms: for the
purposes of this process, any size of intervallic displacement, from the semitone
to the tritone, is of equal validity.51
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The resultant hexachord families of ‘near relatives’ are set out inTable 6. In all
cases, family membership is ensured through a limited number (between one
and three) of common ‘foundational’ pentachords, which are themselves the only
pentachordal subsets of the progenitor hexachords and therefore underpin their
systems.52 Hexachords exclusive to just one family are shown in bold in Table 6,
foundational pentachords are placed to the right of each hexachord and the
prime-form element of each hexachord that is foreign to its foundational pen-
tachord is shown in bold. These families correlate largely with the cardinal 6
aspect of Eriksson’s regions and correspond exactly with Tenkanen’s ‘corner-
stone hexachords and their nearest relatives’, although neither of these sets of
collections demonstrates any aspect of generic intersection other than diatonic-
with-chromatic, seriously limiting the possibility that intergeneric affinity across
the other cardinalities might be induced from them.53 At this point in the process
we can begin to meet some of Quinn’s desiderata: the familial hexachord struc-
ture shown in Table 6 satisfies elements of key criteria 2, 5 and 6, that ‘quality
space’ should be determined by similarity relations, that sets belonging to a
single genus should have intrageneric affinities and that equivalence classes are
an integral part of (what constitutes) ‘quality’ between set classes.

It was noted earlier that computationally generated set-class similarity meas-
ures have typically derived either from subset/superset inclusional comparisons
or from interval-class vector rankings, but that comparable results can often
emerge from both procedures. Unsurprisingly, it transpires that an interval-class
vector analysis of the 50 hexachords will produce much the same spread within
families as does the subset/superset inclusional matching of Table 6. We can start
to perform this analysis by observing that incremental building from the six
interval classes, as illustrated in the Hanson IG chains of Fig. 2, will produce
patterns of interval-class vector growth, as shown in Table 7, which correlate
exactly with the interval-class vector patterns exemplified by the prototype
hexachords in Table 2. Looking next at the interval-class vectors of all 50 hexa-
chords, as allocated in the families of Table 6, we can see that there is still a
tendency for them to follow the characteristic aspects of the patterns in Table 7,
although not as abundantly. To illustrate, within the hexatonic family the ic 2 and
ic 6 content for the maximally similar hexachords is now slightly higher than
6–20’s zero (because slightly less completely and uniquely hexatonic), while the
content of the other five ics, including the defining ic 4, is slightly lower (also
because slightly less completely and uniquely hexatonic). All six constituents of
these seven hexachords’ interval-class vectors reflect their slightly changed ‘hexa-
tonic’ status. Thus, it can be asserted that, although equivalence or similarity
between the members of any hexachord family in Table 6 has been based on
inclusion, there is a degree of equivalence or similarity based on interval-class
vectors as well. Beyond this, Eriksson’s ex. 4 has shown that similar interval-class
vector trends, as represented in his mm vector maxpoint groups, can be dis-
cerned to varying degrees in the generality of set classes. Meanwhile, his ex. 6 has
shown what ought to epitomise each genus type in terms of notably high or low

A PITCH-CLASS SET SPACE ODYSSEY 95

Music Analysis, 32/i (2013) © 2013 The Author.
Music Analysis © 2013 Blackwell Publishing Ltd



T
ab

le
6

S
ix

he
xa

ch
or

d
fa

m
ili

es
of

eq
ui

va
le

nc
e/

si
m

ila
ri

ty
,

ge
ne

ra
te

d
fr

om
he

xa
ch

or
da

l
pr

ot
ot

yp
es

an
d

ba
se

d
on

co
m

m
on

fo
un

da
ti

on
al

pe
nt

ac
ho

rd
s

H
ex

at
on

ic
B

ic
hr

om
at

ic
O

ct
at

on
ic

W
ho

le
-T

on
e

D
ia

to
ni

c
C

hr
om

at
ic

6–
20

(0
,1

,4
,5

,8
,9

)
6–

7
(0

,1
,2

,6
,7

,8
)

6–
30

(0
,1

,3
,6

,7
,9

)
6–

35
(0

,2
,4

,6
,8

,1
0)

6–
32

(0
,2

,4
,5

,7
,9

)
6–

1
(0

,1
,2

,3
,4

,5
)

6–
Z

19
(0

,1
,3

,4
,7

,8
)

5–
21

6–
Z

6
(0

,1
,2

,5
,6

,7
)

5–
7

6–
Z

12
(0

,1
,2

,4
,6

,7
)

5–
19

6–
21

(0
,2

,3
,4

,6
,8

)
5–

33
6–

Z
24

(0
,1

,3
,4

,6
,8

)
5–

23
6–

Z
3

(0
,1

,2
,3

,5
,6

)
5–

2/
5–

3
6–

Z
44

(0
,1

,2
,5

,6
,9

)
5–

21
6–

Z
38

(0
,1

,2
,3

,7
,8

)
5–

7
6–

Z
41

(0
,1

,2
,3

,6
,8

)
5–

28
6–

22
(0

,1
,2

,4
,6

,8
)

5–
33

6–
Z

46
(0

,1
,2

,4
,6

,9
)

5–
27

6–
Z

36
(0

,1
,2

,3
,4

,7
)

5–
1

6–
34

(0
,1

,3
,5

,7
,9

)
5–

33
6–

14
(0

,1
,3

,4
,5

,8
)

5–
21

6–
Z

12
(0

,1
,2

,4
,6

,7
)

5–
7

6–
Z

13
(0

,1
,3

,4
,6

,7
)

5–
19

6–
Z

25
(0

,1
,3

,5
,6

,8
)

5–
23

/5
–2

7
6–

Z
4

(0
,1

,2
,4

,5
,6

)
5–

3
6–

15
(0

,1
,2

,4
,5

,8
)

5–
21

6–
Z

41
(0

,1
,2

,3
,6

,8
)

5–
15

6–
Z

42
(0

,1
,2

,3
,6

,9
)

5–
31

6–
Z

47
(0

,1
,2

,4
,7

,9
)

5–
35

6–
Z

37
(0

,1
,2

,3
,4

,8
)

5–
1

6–
16

(0
,1

,4
,5

,6
,8

)
5–

21
6–

31
(0

,1
,3

,5
,8

,9
)

5–
21

6–
Z

17
(0

,1
,2

,4
,7

,8
)

5–
7

6–
Z

17
(0

,1
,2

,4
,7

,8
)

5–
19

6–
Z

26
(0

,1
,3

,5
,7

,8
)

5–
27

6–
Z

10
(0

,1
,3

,4
,5

,7
)

5–
3

6–
Z

43
(0

,1
,2

,5
,6

,8
)

5–
15

6–
Z

43
(0

,1
,2

,5
,6

,8
)

5–
28

6–
Z

48
(0

,1
,2

,5
,7

,9
)

5–
35

6–
Z

39
(0

,2
,3

,4
,5

,8
)

5–
2

6–
5

(0
,1

,2
,3

,6
,7

)
5–

7
6–

Z
23

(0
,2

,3
,5

,6
,8

)
5–

28
6–

Z
11

(0
,1

,2
,4

,5
,7

)
5–

23
6–

Z
11

(0
,1

,2
,4

,5
,7

)
5–

3
6–

18
(0

,1
,2

,5
,7

,8
)

5–
7

6–
Z

45
(0

,2
,3

,4
,6

,9
)

5–
31

6–
Z

40
(0

,1
,2

,3
,5

,8
)

5–
27

6–
Z

40
(0

,1
,2

,3
,5

,8
)

5–
2

6–
22

(0
,1

,2
,4

,6
,8

)
5–

15
6–

Z
28

(0
,1

,3
,5

,6
,9

)
5–

31
6–

8
(0

,2
,3

,4
,5

,7
)

5–
23

6–
2

(0
,1

,2
,3

,4
,6

)
5–

1/
5–

2
6–

Z
49

(0
,1

,3
,4

,7
,9

)
5–

28
6–

9
(0

,1
,2

,3
,5

,7
)

5–
23

6–
8

(0
,2

,3
,4

,5
,7

)
5–

2
6–

14
(0

,1
,3

,4
,5

,8
)

5–
27

6–
9

(0
,1

,2
,3

,5
,7

)
5–

2
6–

Z
29

(0
,1

,3
,6

,8
,9

)
5–

31
6–

31
(0

,1
,3

,5
,8

,9
)

5–
27

6–
14

(0
,1

,3
,4

,5
,8

)
5–

3
6–

Z
50

(0
,1

,4
,6

,7
,9

)
5–

19
6–

33
(0

,2
,3

,5
,7

,9
)

5–
23

/5
–3

5
6–

15
(0

,1
,2

,4
,5

,8
)

5–
3

6–
5

(0
,1

,2
,3

,6
,7

)
5–

19
6–

18
(0

,1
,2

,5
,7

,8
)

5–
19

6–
21

(0
,2

,3
,4

,6
,8

)
5–

28
6–

27
(0

,1
,3

,4
,6

,9
)

5–
31

6–
34

(0
,1

,3
,5

,7
,9

)
5–

28

N
ot

e:
G

en
us

pr
ot

ot
yp

es
ar

e
pl

ac
ed

at
th

e
to

p
of

ea
ch

co
lu

m
n.

T
he

pr
im

e
fo

rm
el

em
en

t
of

ea
ch

he
xa

ch
or

d
fo

re
ig

n
to

it
s

fo
un

da
ti

on
al

pe
nt

ac
ho

rd
is

sh
ow

n
in

bo
ld

;
tw

o
pr

im
e

fo
rm

nu
m

er
al

s
in

bo
ld

in
di

ca
te

al
te

rn
at

iv
e

fo
re

ig
n

el
em

en
ts

.

96 BERNARD GATES

Music Analysis, 32/i (2013)© 2013 The Author.
Music Analysis © 2013 Blackwell Publishing Ltd



T
ab

le
7

In
te

rv
al

-c
la

ss
ve

ct
or

gr
ow

th
in

th
e

H
an

so
n

in
te

rv
al

-c
la

ss
pr

oj
ec

ti
on

s

ic
 4

 
bu

ild
2–

4
3–

12
4–

19
5–

21
6–

20
7–

21
8–

19
9–

12
10

–4
In

cr
ea

si
ng

 
ic

 4
 fi

rs
t/

m
os

t

In
cr

ea
si

ng
 

ic
s 

2 
an

d 
6 

la
st

/le
as

t
[0

00
10

0]
[0

00
30

0]
[1

01
31

0]
[2

02
42

0]
[3

03
63

0]
[4

24
64

1]
[5

45
75

2]
[6

66
96

3]
[8

88
98

4]

ic
 3

 
bu

ild
2–

3
3–

10
4–

28
5–

31
6–

27
7–

31
8–

28
9–

10
10

–3
In

cr
ea

si
ng

 
ic

s 
3 

an
d 

6 
fir

st
/m

os
t

In
cr

ea
si

ng
 

ic
s 

2,
 3

, 
4 

an
d 

5 
la

te
r/

le
ss

, 
an

d 
ev

en
ly

[0
01

00
0]

[0
02

00
1]

[0
04

00
2]

[1
14

11
2]

[2
25

22
2]

[3
36

33
3]

[4
48

44
4]

[6
68

66
4]

[8
89

88
4]

6–
30

[2
24

22
3]

ic
 2

 
bu

ild
2–

2
3–

6
4–

21
5–

33
6–

35
7–

33
8–

21
9–

6
10

–2
In

cr
ea

si
ng

 
ic

s 
2 

4 
an

d 
6 

fir
st

/m
os

t

In
cr

ea
si

ng
 

ic
s 

1,
 3

 
an

d 
5 

la
st

/
le

as
t

[0
10

00
0]

[0
20

10
0]

[0
30

20
1]

[0
40

40
2]

[0
60

60
3]

[2
62

62
3]

[4
74

64
3]

[6
86

76
3]

[8
98

88
4]

ic
 5

 
bu

ild
2–

5
3–

9
4–

23
5–

35
6–

32
7–

35
8–

23
9–

9
10

–5
In

cr
ea

si
ng

 
in

 t
he

 o
rd

er
 

ic
 5

, 
ic

 2
, 

ic
 

3,
 i

c 
4,

 i
c 

1,
 

ic
 6

[0
00

01
0]

[0
10

02
0]

[0
21

03
0]

[0
32

14
0]

[1
43

25
0]

[2
54

36
1]

[4
65

47
2]

[6
76

68
3]

[8
88

89
4]

ic
 1

 
bu

ild
2–

1
3–

1
4–

1
5–

1
6–

1
7–

1
8–

1
9–

1
10

–1
In

cr
ea

si
ng

 
in

 t
he

 o
rd

er
 

ic
 1

, 
ic

 2
, 

ic
 

3,
 i

c 
4,

 i
c 

5,
 

ic
 6

[1
00

00
0]

[2
10

00
0]

[3
21

00
0]

[4
32

10
0]

[5
43

21
0]

[6
54

32
1]

[7
65

44
2]

[8
76

66
3]

[9
88

88
4]

ic
 6

 
bu

ild
2–

6
3–

5
4–

9
5–

7
6–

7
7–

7
8–

9
9–

5
10

–6
In

cr
ea

si
ng

 
ic

s 
1,

 5
 a

nd
 

6 
fir

st
/m

os
t

In
cr

ea
si

ng
 

ic
 3

 l
as

t/
le

as
t

[0
00

00
1]

[1
00

01
1]

[2
00

02
2]

[3
10

13
2]

[4
20

24
3]

[5
32

35
3]

[6
44

46
4]

[7
66

67
4]

[8
88

88
5]

N
ot

e:
In

ea
ch

in
te

rv
al

-c
la

ss
ve

ct
or

,
in

te
rv

al
cl

as
se

s
in

cr
ea

si
ng

fir
st

/m
os

t
ar

e
sh

ow
n

in
th

e
la

rg
es

t
fo

nt
an

d
in

te
rv

al
cl

as
se

s
in

cr
ea

si
ng

la
st

/le
as

t
ar

e
sh

ow
n

in
th

e
sm

al
le

st
fo

nt
(i

c
6

va
lu

es
sh

ou
ld

ef
fe

ct
iv

el
y

be
do

ub
le

d)
.

A PITCH-CLASS SET SPACE ODYSSEY 97

Music Analysis, 32/i (2013) © 2013 The Author.
Music Analysis © 2013 Blackwell Publishing Ltd



ic counts, and what distinguishes one genus from another.54 These two examples
go some distance towards satisfying key criteria 5 and 8: that set classes belong-
ing to a single genus ‘would lie near one another’ and that intrageneric affinities
are arranged around ‘privileged, highly symmetric’ prototypes which are ‘quite
distant from one another’. Eriksson’s ex. 6 closely resembles Buchler’s corre-
sponding i-set-based chart (see Buchler’s fig. 5).55 Eriksson’s ex. 7, which illus-
trates his mm vector-induced regions, has widened the range of membership of
his genera to include all set classes, with the hexachord component of each of his
regions correlating closely to the hexachord families of Table 6. Eriksson’s array
also shows a fairly close relationship to the Monte Carlo–type and cluster
analysis–induced regions collated by Quinn.56

Although Eriksson and Quinn have achieved completion of the set-class
universe through interval-class vector analysis, their regions do not provide
sufficient incidence of genus overlap; only Forte’s genus system has done so. It
seems that, in the majority of cases, Eriksson’s examination of interval-class
vector characteristics and Quinn’s analyses of interval-class similarity measures
have assigned each set class to just one genus. But while there is surely a need to
extend and refine membership of any genera beyond that provided by Hanson,
Eriksson and Quinn, there is also just as strong a need to limit this membership
in order to avoid the profligacy engendered by Forte. Any further family-based
expansion similar to that found inTable 6 would unfortunately result in overlarge
genus membership in the other cardinalities, creating some of the problems
already displayed by Forte’s system. Therefore, in order to expand membership
of my genera to include a sufficient but balanced degree of intergeneric affinity
(key criterion 5), I propose that the inclusional road of subset/superset IG
chaining should now be explored further. Before embarking on this new direc-
tion, however, a major stumbling block has to be surmounted, namely the
capacity for subset embedding to escalate as the difference between cardinalities
grows, resulting in an accumulation of myriad inclusional relationships across
the cardinalities.57

While IG chaining based on prime-form similarity might provide the best
rationale for the evolution of a lucid and uncluttered system of genera, clearly
some form of constraint will be needed to keep membership and intergeneric
intersection to manageable proportions. It will therefore be desirable to create a
composite form of IG chaining that incorporates bonded paired or grouped set
classes at each cardinal stage as a core constructional principle, with subset(s)/
superset(s) of the genus prototype, or hexachord(s) from the genus hexachord
family, at its limits.This method of bonding will focus the intrinsic construction
of the intermediate cardinal stages within required, genera-founded limits. The
bonded pattern of applied inclusivity between set classes of adjacent cardinalities
might also be extended beyond cardinal 6 to the point where it reaches its natural
conclusion. This method of ‘bonded IG’ (henceforth referred to as ‘BIG’)
chaining can be amalgamated with the hexachord families of Table 6 to create a
properly complete and consistent system of classification, which will in turn form
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the basis for a new, comprehensive pitch-class set system of genera. Given the
empirical desire to categorise these BIG chains according to the proposed
intuitive genera and to the hexachord families of Table 6, and given the equally
candid desire to create genera of manageable proportions with watertight con-
ditions for membership, the primary criteria for the creation of any BIG chain
and its ultimate allocation to a generic ‘type’ will have to be defined precisely and
then strictly adhered to. As a logical consequence of the argument so far, these
criteria would be:

1. that any hexachord content complies to the generic hexachord family;
2. that initial set class(es) of lowest cardinality are either subset(s) of the

defining genus progenitor hexachord or, if the BIG chain begins with a
hexachord, member(s) of the generic hexachord family;

3. that final set class(es) of highest cardinality are either superset(s) of the
defining genus progenitor hexachord or, if the BIG chain terminates with
a hexachord, member(s) of the generic hexachord family;

4. that intermediate pairs of set classes of the same cardinality adhere strictly
to an all-inclusive network of set-to-set interlacing and binding pathways,
where both members of the pair are subsets or supersets of the set class(es)
of an adjacent cardinality, as illustrated in Fig. 3; and

5. that BIG chains display at least one of the bonded criss-cross patterns of
inclusivity shown in Fig. 3.58

Following these procedures, all validly created BIG chains can be securely
categorised and listed under the intuitive genus names that head Tables A1–A6
(see the Appendix).59 The only exception to the above criteria that needs to be
made concerns those fundamental Hanson/Eriksson/Buchler IG (non-bonded)
chains for each intuitive genus which have simpler one-to-one pathways, but
which must nevertheless be allowed into the appropriate categories ofTables A1–
A6, either because they have proved initiatory to the whole ensuing processes of
generation (such as 6–20 (0,1,4,5,8,9), the hexatonic prototype) or because they
act as host to certain singular set classes of high invariance that could not figure
as elements within the BIG form of chaining. These singular IG chains are
labelled either ‘Hanson/Eriksson IG chain’ or ‘Hanson/Eriksson/Buchler IG
chain’ inTables A1–A6.60 Every set class present under the intuitive genus names
of Tables A1–A6 can now be transferred to the corresponding six genera, as
classified in Table 8.61 The modus operandi displayed in the creation of
Tables A1–A6 and Table 8 conforms to key criterion 3 in that it presents

Fig. 3 An example of a BIG chain’s bonded pattern of subset/superset inclusivity

set b, cardinal z + 1 set d, cardinal z + 2 

set a, cardinal z set f, cardinal z + 3

set c, cardinal z + 1 set e, cardinal z + 2 
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Table 8 A hexachord-derived pitch-class set system of genera

(a) Hexatonic genus

2–1+ (0,1) 3–1+ (0,1,2) 4–2+ (0,1,2,4) 5–3 (0,1,2,4,5) 6–14e (0,1,3,4,5,8)
2–3+ (0,3) 3–3e (0,1,4) 4–4 + (0,1,2,5) 5–6+ (0,1,2,5,6) 6–15e (0,1,2,4,5,8)
{2–4e+ (0,4)} 3–4e+ (0,1,5) 4–5 + (0,1,2,6) 5–11e (0,2,3,4,7) 6–16e* (0,1,4,5,6,8)
2–5+ (0,5) 3–9+ (0,2,7) 4–7e (0,1,4,5) 5–13 (0,1,2,4,8) 6–Z19e* (0,1,3,4,7,8)

3–10+ (0,3,6) 4–12+ (0,2,3,6) 5–16 (0,1,3,4,7) 6–20e* (0,1,4,5,8,9)
3–11e (0,3,7) 4–14+ (0,2,3,7) 5–Z17e* (0,1,3,4,8) 6–31e (0,1,3,5,8,9)
3–12e (0,4,8) 4–16+ (0,1,5,7) 5–Z18e+ (0,1,4,5,7) 6–Z44e* (0,1,2,5,6,9)

4–17e (0,3,4,7) 5–20+ (0,1,3,7,8)
4–18+ (0,1,4,7) 5–21e* (0,1,4,5,8)
4–19e (0,1,4,8) 5–22e* (0,1,4,7,8)
4–20e (0,1,5,8) 5–26 (0,2,4,5,8)
4–22+ (0,2,4,7) 5–27 (0,1,3,5,8)
4–24 (0,2,4,8) 5–30 (0,1,4,6,8)
4–27+ (0,2,5,8) 5–32 (0,1,4,6,9)

5–Z37e* (0,3,4,5,8)
5–Z38e+ (0,1,2,5,8)

(b) Bichromatic genus

2–1+ (0,1) 3–1+ (0,1,2) 4–1 (0,1,2,3) 5–4e (0,1,2,3,6) 6–5e (0,1,2,3,6,7)
{2–2+ (0.2)} 3–4+ (0,1,5) 4–2+ (0,1,2,4) 5–5e (0,1,2,3,7) 6–Z6e* (0,1,2,5,6,7)
{2–4+ (0,4)} 3–5e (0,1,6) 4–4+ (0,1,2,5) 5–6e+ (0,1,2,5,6) 6–7e* (0,1,2,6,7,8)
2–5+ (0,5) 3–8 (0,2,6) 4–5e+ (0,1,2,6) 5–7e (0,1,2,6,7) 6–Z12e (0,1,2,4,6,7)
2–6e (0,6) 3–9+ (0,2,7) 4–6e* (0,1,2,7) 5–9+ (0,1,2,4,6) 6–Z17e (0,1,2,4,7,8)

4–8e* (0,1,5,6) {5–Z12e (0,1,3,5,6)} 6–18e (0,1,2,5,7,8)
4–9e (0,1 6 7) 5–13 (0,1,2,4,8) 6–22 (0,1,2,4,6,8)
4–13+ (0,1,3,6) 5–14e (0,1,2,5,7) 6–Z38e* (0,1,2,3,7,8)
4–14+ (0,2,3,7) 5–15e (0,1,2,6,8) 6–Z41e (0,1,2,3,6,8)
4–16e+ (0,1,5,7) 5–Z18e+ (0,1,4,5,7) 6–Z43e (0,1,2,5,6,8)
4–18+ (0,1,4,7) 5–19e (0,1,3,6,7)
4–22+ (0,2,4,7) 5–20e+ (0,1,3,7,8)
4–23 (0,2,5,7) 5–24+ (0,1,3,5,7)
4–25 (0,2,6,8) 5–28 (0,2,3,6,8)

5–29e (0,1,3,6,8)
5–30 (0,1,4,6,8)
5–Z36e+ (0,1,2,4,7)
5–Z38e+ (0,1,2,5,8)

(c) Octatonic genus

2–1+ (0,1) 3–1+ (0,1,2) 4–3e† (0,1,3,4) 5–4 (0,1,2,3,6) 6–5 (0,1,2,3,6,7)
2–2+ (0,2) 3–2 (0,1,3) 4–4+ (0,1,2,5) 5–6+ (0,1,2,5,6) 6–Z12 (0,1,2,4,6,7)
2–3e+ (0,3) 3–3 (0,1,4) 4–5+ (0,1,2,6) 5–7 (0,1,2,6,7) 6–Z13e* (0,1,3,4,6,7)
2–4+ (0,4) 3–4+ (0,1,5) 4–9 (0,1,6,7) 5–10e† (0,1,3,4,6) 6–Z17 (0,1,2,4,7,8)
2–5+ (0,5) 3–5 (0,1,6) 4–10e† (0,2,3,5) {5–Z12e (0,1,2,3,5,6)} 6–18 (0,1,2,5,7,8)
2–6e (0,6) 3–7 (0,2,5) 4–12e+ (0,2,3,6) 5–15 (0,1,2,6,8) 6–21 (0,2,3,4,6,8)

3–8 (0,2,6) 4–13e+ (0,1,3,5) 5–16e† (0,1,3,4,7) 6–Z23e* (0,2,3,5,6,8)
3–9+ (0,2,7) 4–14+ (0,2,3,7) 5–Z18e+ (0,1,4,5,7) 6–27e* (0,1,3,4,6,9)
3–10e+ (0,3,6) 4–Z15e* (0,1,4,6) 5–19e (0,1,3,6,7) 6–Z28e* (0,1,3,5,6,9)
3–11 (0,3,7) 4–16+ (0,1,5,7) 5–20+ (0,1,3,7,8) 6–Z29e* (0,1,3,6,8,9)

4–17† (0,3,4,7) 5–25e† (0,2,3,5,8) 6–30e* (0,1,3,6,7,9)
4–18e+ (0,1,4,7) 5–26 (0,2,4,5,8) 6–34 (0,1,3,5,7,9)
4–25e (0,2,6,8) 5–28e (0,2,3,6,8) 6–Z41 (0,1,2,3,6,8)
4–26† (0,3,5,8) 5–29 (0,1,3,6,8) 6–Z42e* (0,1,2,3,6,9)
4–27+ (0,2,5,8) 5–31e* (0,1,3,6,9) 6–Z43 (0,1,2,5,6,8)
4–28e* (0,3,6,9) 5–32e† (0,1,4,6,9) 6–Z45e* (0,2,3,4,6,9)
4–Z29e* (0,1,3,7) 5–Z36e+ (0,1,2,4,7) 6–Z49e* (0,1,3,4,7,9)

5–Z38e+ (0,1,2,5,8) 6–Z50e* (0,1,4,6,7,9)
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Table 8 Continued

(d) Whole-Tone genus

2–2e+ (0,2) 3–6e (0,2,4) 4–2+ (0,1,2,4) 5–8e (0,2,3,4,6) 6–21e (0,2,3,4,6,8)
2–4e+ (0,4) 3–8e (0,2,6) 4–11 (0,1,3,5) 5–9e+ (0,1,2,4,6) 6–22e (0,1,2,4,6,8)
2–6e (0,6) 3–12e (0,4,8) 4–12+ (0,2,3,6) 5–13e (0,1,2,4,8) 6–34e (0,1,3,5,7,9)

4–19 (0,1,4,8) 5–24e+ (0,1,3,5,7) 6–35e* (0,2,4,6,8,10)
4–21e (0,2,4,6) 5–26e (0,2,4,5,8)
4–22+ (0,2,4,7) 5–28e (0,2,3,6,8)
4–24e (0,2,4,8) 5–30e (0,1,4,6,8)
4–25e (0,2,6,8) 5–33e* (0,2,4,6,8)
4–27+ (0,2,5,8) 5–34e (0,2,4,6,9)

(e) Diatonic genus

2–1+ (0,1) 3–2 (0,1,3) 4–2+ (0,1,2,4) 5–9+ (0,1,2,4,6) 6–8e (0,2,3,4,5,7)
2–2e+ (0,2) 3–4+ (0,1,5) 4–10e (0,2,3,5) 5–10 (0,1,3,4,6) 6–9e (0,1,2,3,5,7)
2–3+ (0,3) 3–6 (0,2,4) 4–11e (0,1,3,5) 5–11e (0,2,3,4,7) 6–Z11e (0,1,2,4,5,7)
2–4+ (0,4) 3–7e (0,2,5) 4–13+ (0,1,3,6) {5–Z12 (0,1,3,5,6)} 6–14 (0,1,3,4,5,8)
2–5e+ (0,5) 3–9e+ (0,2,7) 4–14e+ (0,2,3,7) 5–14e (0,1,2,5,7) 6–Z24e* (0,1,3,4,6,8)

3–10+ (0,3,6) 4–16+ (0,1,5,7) 5–20e+ (0,1,3,7,8) 6–Z25e* (0,1,3,5,6,8)
3–11 (0,3,7) 4–18+ (0,1,4,7) 5–23e* (0,2,3,5,7) 6–Z26e* (0,1,3,5,7,8)

4–20 (0,1,5,8) 5–24+ (0,1,3,5,7) 6–31 (0,1,3,5,8,9)
4–21 (0,2,4,6) 5–25 (0,2,3,5,8) 6–32e* (0,2,4,5,7,9)
4–22e+ (0,2,4,7) 5–27e (0,1,3,5,8) 6–33e* (0,2,3,5,7,9)
4–23e (0,2,5,7) 5–29e (0,1,3,6,8) 6–Z40e (0,1,2,3,5,8)
4–26e (0,3,5,8) 5–32 (0,1,4,6,9) 6–Z46e* (0,1,2,4,6,9)
4–27+ (0,2,5,8) 5–34 (0,2,4,6,9) 6–Z47e* (0,1,2,4,7,9)

5–35e* (0,2,4,7,9) 6–Z48e* (0,1,2,5,7,9)
5–Z36+ (0,1,2,4,7)
5–Z38 + (0,1,2,5,8)

(f) Chromatic genus

2–1e+ (0,1) 3–1e+ (0,1,2) 4–1e (0,1,2,3) 5–1e* (0,1,2,3,4) 6–1e* (0,1,2,3,4,5)
2–2e+ (0,2) 3–2e (0,1,3) 4–2e+ (0,1,2,4) 5–2e* (0,1,2,3,5) 6–2e* (0,1,2,3,4,6)
2–3+ (0,3) 3–3 (0,1,4) 4–3e (0,1,3,4) 5–3e (0,1,2,4,5) 6–Z3e* (0,1,2,3,5,6)
2–4+ (0,4) 3–4+ (0,1,5) 4–4e+ (0,1,2,5) 5–4e (0,1,2,3,6) 6–Z4e* (0,1,2,4,5,6)
2–5+ (0,5) 3–6 (0,2,4) 4–5+ (0,1,2,6) 5–5e (0,1,2,3,7) 6–8e (0,2,3,4,5,7)

3–7 (0,2,5) 4–7 (0,1,4,5) 5–6+ (0,1,2,5,6) 6–9e (0,1,2,3,5,7)
3–10+ (0,3,6) 4–10e (0,2,3,5) 5–8 (0,2,3,4,6) 6–Z10e* (0,1,3,4,5,7)

4–11e (0,1,3,5) 5–9+ (0,1,2,4,6) 6–Z11e (0,1,2,4,5,7)
4–12+ (0,2,3,6) 5–10 (0,1,3,4,6) 6–14 (0,1,3,4,5,8)
4–13+ (0,1,3,6) 5–11e (0,2,3,4,7) 6–15 (0,1,2,4,5,8)
4–18+ (0,1,4,7) {5–Z12 (0,1,3,5,6)} 6–Z36e* (0,1,2,3,4,7)
4–21 (0,2,4,6) 5–16 (0,1,3,4,7) 6–Z37e* (0,1,2,3,4,8)
4–22+ (0,2,4,7) 5–Z18+ (0,1,4,5,7) 6–Z39e* (0,2,3,4,5,8)

5–24+ (0,1,3,5,7) 6–Z40e (0,1,2,3,5,8)
5–25 (0,2,3,5,8)
5–Z36+ (0,1,2,4,7)

Key: Bold: Subsets of the genus-defining hexachord
*: Sets exclusive to the genus
†: Subsets of 8–28 (0,1,3,4,6,7,9,10), the octatonic scale, but not of 6–30 (0,1,3,6,7,9)
{}: Tentative assignments to genera
+: Gregarious set classes (with the highest genus membership)
e: Membership of Eriksson’s genera
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‘a relatively simple procedure that generates a whole system’.62 Rules have now
been set out governing the formation of the genera in order to incorporate
unifying aspects such as inclusion relations and the generation of a genus from
one or more initial set classes, thus satisfying elements of key criteria 2 and 9:
that a potential ‘quality space’ (unified spatial model) should be determined by
a ‘hierarchical taxonomy’ of species or genera, and that consideration should be
given to subset structure.

Just two deviant set classes, the complementary pair 5–Z12 (0,1,3,5,6) and
7–Z12 (0,1,2,3,4,7,9), stubbornly refuse to belong to any genus; they will there-
fore have to be placed tentatively in braces ({}) in Table 8 within those genera
to which their Z-partners, 5–Z36 (0,1,2,4,7) and 7–Z36 (0,1,2,3,5,6,8), and
their hexachordal supersets/subsets belong.63 Two other set classes, 2–2 (0,2)
and 2–4 (0,4), have been placed in braces into the Bichromatic genus, indicating
their nominal status as subsets (and the nominal status of their complements,
set classes 10–2 and 10–4, as supersets) of the progenitor hexachord, 6–7
(0,1,2,6,7,8), despite their inability to form part of any bichromatic BIG chain
for this system, as witnessed by their absence from Table A2. For a similar
reason, set class 2–4 (0,4) is also placed in braces in the Hexatonic genus through
its status as a subset of 6–20 (0,1,4,5,8,9), despite its absence from the BIG
chains of Table A1. Set classes 4–Z15 (0,1,4,6) and 4–Z29 (0,1,3,7) are
equivocal, too, owing to the uniquely non-committal nature of their all-interval
interval-class vector profiles. They squeak into the Octatonic genus by virtue of
their status as subsets of both 6–30 (0,1,3,6,7,9) and the octatonic scale 8–28
(0,1,3,4,6,7,9,10), but actually they fail to engage with most of the other genera
by only the narrowest of margins; this jack-of-all-trades-master-of-none pecu-
liarity will be explored later in the article as a proto-generic characteristic shared
with several other set classes of neutral allegiance.64

Tables A1–A6 show various relationships and forms of sub-categorisation,
which allow further abstract equivalences and transformational symmetries to
be particularised (satisfying key criteria 6 and 9). An indication is given, for
instance, of complement-relation types present within or between particular BIG
chains: those labelled ‘(S)’ have a symmetrical growth pattern, commensurate
with the consequence that constituent larger sets of cardinalities 7–10 all turn
out to be true complements of the BIG chains’ smaller sets, while those labelled
‘(R)’ have a reciprocal pattern, where supersets of one Z-designated hexachord
are the exact complements of the subsets of its Z-partner, and vice versa.65 These
latter are braced together (}) when they extend beyond their hexachords, and are
labelled ‘R’. Some octatonic BIG chains are labelled ‘(S8)’ or ‘R8’, demonstrat-
ing that in these instances symmetrical or reciprocal complementation occurs
within an eight-note (8–28) aggregate. One further form of categorisation,
labelled ‘(M)’ or braced (}) as ‘M’, indicates that set classes in these (usually
braced) BIG chains are related through the cycle-of-fourths (or cycle-of-fifths)
transform.66 All diatonic and chromatic BIG chains are inexorably linked one-
to-one from one system to the other through this M5 or M7 transform and have
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therefore been contiguously arranged thus in the adjacently placed Tables A5
and A6. For the same reason, all set classes in the Diatonic and Chromatic
genera in Table 8 can be matched one-to-one. The reflective aspect of this
phenomenon will be used later as a means towards developing the relational
ordering of set classes within a diatonic-to-chromatic spectrum. Finally, some
BIG chains are replicated in full from one genus to another, suggesting areas of
strong intergeneric linkage (satisfying key criterion 5).67

Table 8 conforms closely to Eriksson’s generic regions based on mm vectors
and at the same time promotes many other set classes to a quasi-prototypical
status (i.e. those set classes marked with an asterisk [*] but not previously
identified as having genus exclusivity).68 Unlike Eriksson’s regions, however,
Table 8 shows many individual set classes occupying more than one genus, to
some extent contributing to a prismatic filtering of tangible scale- or aggregate-
related collections (as in Forte’s genera) but also retaining a pragmatic footing in
their relational links with incipient prototype hexachords (as in Eriksson’s
regions and Parks’s first four ‘Debussy’ genera), thereby satisfying key criteria 5
and 8: that the system as a whole would accommodate overlapping regions but
that each genus would be organised around its own prototype(s). Indeed, my six
genera represent expanded forms of Eriksson’s regions, while the Octatonic,
Whole-Tone, Diatonic and Chromatic parts of my system represent expanded
forms of Parks’s like-named ‘Debussy’ genera, and all but my Whole-Tone bear
some relation to Forte’s genera.69 Whereas Forte’s trichord-generated genera all
have low representations of trichords and tetrachords (with correspondingly low
duplications between genera) and unavoidably higher incidences of hexachords
(with correspondingly higher duplications between genera), the burden of regu-
lation in Table 8 has shifted to the hexachords, which now become the least
duplicated and least represented category within each genus, while incipient sets
of low cardinality have become correspondingly higher in their duplication and
greater in their incidence within each genus.70 All sets focused in one genus as
distant ‘loners’, marked with an asterisk in Table 8, and all subsets of a defining
prototypical hexachord, shown in boldface type in Table 8, are ‘characteristic’ of
the genus, intuitively occupying a spatial area of affinity between the prototype
itself and those set classes shared by more than one genus.71 Gregarious,
‘friendly’ or ‘sociable’ set classes are labelled ‘+’ in Table 8, while set classes
which correspond to Eriksson’s regions are labelled ‘e’. Although most interge-
neric links are provided by pentachords and hexachords, in some circumstances
dyads, trichords and tetrachords can just as easily provide definitive areas of
two-way and three-way linkage. More generally, though, it is the mid-sized
tetrachord category of set classes (and the eight-element complements) that
proves to be the most genus specific of the cardinalities. A survey of the 29
tetrachordal set classes shows that, when considered as true subsets of the
prototypical hexachords, almost every one of them is distributed individually and
exclusively into one genus, the scant ‘social’ exceptions being 4–9 (0,1,6,7), 4–25
(0,2,6,8) and the diatonic/chromatic 4–10 (0,2,3,5) and 4–11 (0,1,3,5).
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Following the approach of Forte and Parks, attention can now be focused on
the definition of interpretative rules by which one genus is given preference over
other genera in the analysis of any particular piece or passage, in order to deal
more fully with intergeneric affinities (satisfying key criterion 5).72 As a first
principle, set classes whose entries are in bold or are marked with an asterisk (*)
or dagger (†) in Table 8 ought to take precedence over other set-class entries as
analytical pointers, since they represent subsets of the defining hexachord or
scale, or set classes that are exclusive to the genus. But just as interesting for
analytical practice, perhaps, are those more neutral set classes which only mar-
ginally associate with two or more genera and which show no particular alle-
giance to any. An example in this category would be set class 5–11 (0,2,3,4,7),
which has an intriguingly even spread of ics 1 to 5 in its interval-class vector
[222220] and a confusing range of membership spanning the Hexatonic, Dia-
tonic and Chromatic genera.73 Clearly, contextual association is essential in such
cases: aligned set classes in Forte’s analysis of the third of Schoenberg’s Five
Orchestral Pieces, Op. 16, for example, help to place these instances of set class
5–11 firmly in the Hexatonic camp, albeit with some intriguing sideways glances
towards the Diatonic and Chromatic.74 Furthermore, the analytical method has
to be flexible enough to reflect perceived overall patterns of pitch organisation as
well as more localised shifts and relationships. Isaacson has emphasised ‘the
crucial role [that] segmentation plays in analysis of this sort’ and warns that
‘[t]he identification of musical segments can have a powerful effect on similarity
relations’.75 He issues a timely reminder that contrast should be seen to feature
just as strongly as similarity in music of the atonal era, and that ‘the tension
between similarity and contrast is central to the way much western art music
works’.76 He shows how different segmentations of a melodic phrase from the
fourth of Schoenberg’s Six Little Piano Pieces, Op. 19, can highlight different
relational aspects, revealing a shimmering and multi-faceted assemblage of
generic components.

Forte’s segmentation of the third of Webern’s Four Pieces for violin and piano,
Op. 7, is bound together by a pervasive 4–9 (0,1,6,7) motive, interacting with the
other complexes around it.77 This motive is initially incorporated within a
Bichromatic ambit of set classes but is subsequently aligned within an Octatonic
one.78 Such neat divisions between the genera are, of course, something of a
rarity in practice. Indeed, it has often been proposed that differing scale and
aggregate collections frequently correlate or coexist in particular ways. Richard
Cohn, for instance, advises that ‘interpenetrations of diatonic and hexatonic
principles suggest that the hexatonic model is likely to achieve the broadest scope
and deepest insight into nineteenth-century music if used not in isolation from
standard diatonic models, but rather in conjunction with them ... . Although
extended triadic progressions may simultaneously be interpretable in diatonic
and hexatonic (or more generally, chromatic) spaces, ... “phenomena hearable in
two or more ways” function as [mediating] pivots ... between hexatonic and
diatonic [or chromatic] space’.79 Forte likewise warns that ‘we do well to regard
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“the octatonic” as a network with multiple connections to the other harmonic
environments, and not merely as an ordered scalar pattern’.80 Ultimately, seg-
mentation will reveal subtle changes between genera, sometimes involving shared
sets, and sometimes across much smaller time spans of perhaps only one or two
bars. As an example, the piano chords in bars 4–6 of the second of Berg’s Four
Pieces for clarinet and piano, Op. 5, intermingle Octatonic (or almost-Octatonic),
Diatonic and Hexatonic chords with Octatonic and Chromatic lateral lines. This
occurs through the medium of a profuse array of Octatonic/Diatonic/Hexatonic
4–27s (0,2,5,8) before conceding to the Hexatonic collection, 6–20 (0,1,4,5,
8,9), at the end of the sequence.

IV. A Detour Demonstrating the Ameliorative Effect of the M5

Transform in Creating a Diatonic-to-Chromatic Spectrum of All Set
Classes, Followed by a Foray into Interval-Class Vector Characteristics
as a Determinant for Genus-Based Levels of Set-Class Distance,
Finally to Gain Access to an Affinity Mapping of the
Set-Class Universe

The next step forward in this quest for a three-dimensional representation of all
set classes will involve the creation of an all-inclusive (one-dimensional) diatonic-
to-chromatic ordering, which can then be expanded into three dimensions.81

This will be achieved by employing multiplicative relationships between set
classes, specifically those derived from operations which augment elements of the
prime forms of set classes by a factor of five or seven. Although these operations
(often called ‘M5’ and ‘M7’) have traditionally been used as compositional
strategies for transforming row segments or tropes, the resultant set-class rela-
tionships can provide useful analytical insights, and can have far-reaching theo-
retical consequences as an organisational means of placing set classes in a
multi-dimensional space. Under these operations, elements of the prime form of
a set class (pitch or interval) are multiplied by either five or seven (i.e. exponen-
tially transposed or widened by these multipliers). The operation creates an
equivalent set class which is either another (Tn orTnI) instance of the same prime
form of a set class (i.e. an M-invariant partner, formed through a self-mapping
non-transformation) or a related set class of the same cardinality and with the
same degree of symmetry (that is, an M-related partner, formed through a
reciprocally mapping transformation).82 Put another way, the fourths/fifths-cycle
aspect of a set class is ‘swapped’ for the chromatic-cycle aspect under the
operation, or vice versa. Fig. 4a shows how interval-class vector multiplicities of
ics 2, 3, 4 and 6 (and their inversions, 10, 9, 8 and 6) are inverted or retained
intact when multiplied by five or seven, while those of ics 1 and 5 (and their
inversions, 11 and 7) are swapped or mapped into each other. Fig. 4b gives an
example of the application of the operation(s) to a set class in order to transform
it into a reciprocal (M-related) set class. Fig. 4c gives an example of the alter-
native application of the operation(s) to a set class in order to create an instance
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of the same (M-invariant) set class; in this, and in any other operation involving
M invariants, a ‘hidden’ swap occurs, simply because such set classes already
happen to have the same number of ics 1 and 5. Either operation, M5 or M7, will
produce the same transformational or equivalent set class. When either operation
is re-applied to the M-related equivalent set class, the original set class is
restored. Fig. 4d gives an example of this reverse operation.

With M-invariant set classes, the equivalences are often both Tn and TnI
related under the operation, on account of their inherent symmetry. M-related
set classes clearly differ in this respect: only when an original set class is repro-
duced through a second multiplicative step can it be seen that this new version

Fig. 4a The conversion of the interval 1 cycle to the interval 5 or interval 7 cycle by
multiplying each element by 5 or 7, mod. 12 (transposing each element by T5 or T7)

ic 1 cycle 0 1 2 3 4 5 6 7 8 9 10 11 
          ×5             
ic 5 cycle 0 5 10 3 8 1 6 11 4 9 2 7 
                      
ic 1 cycle 0 1 2 3 4 5 6 7 8 9 10 11 
          ×7             
ic 7 cycle 0 7 2 9 4 11 6 1 8 3 10 5 

Fig. 4b An example of the M5/M7 transform of a set class to its M-related set class

set class 4–27 (0,2,5,8), ic vector [012111] with ics 1 and 5 in bold 

prime form (0,2,5,8) × 5 or × 7 = (0,10,25,40) or (0,14,35,56) 

= mod 12 (0,10,1,4) or (0,2,11,8) 

= prime form (0,2,3,6) set class 4–12, ic vector [112101] 

Fig. 4c An example of the M5/M7 transform of a set class to its M-invariant self

set class 4–10 (0,2,3,5), ic vector [122010] 

prime form (0,2,3,5) × 5 or × 7 = (0,10,15,25) or (0,14,21,35) 

= mod 12 (0,10,3,1) or (0,2,9,11) 

= prime form (0,2,3,5) set class 4-10, ic vector [122010] 

Fig. 4d An example of the reapplication of the M5/M7 transform of the M-related
equivalent set class, in order that the original set class is restored

set class 4–12 (0,2,3,6), ic vector [112101] 

prime form (0,2,3,6) × 5 or × 7 = (0,10,15,30) or (0,14,21,42) 

= mod 12 (0,10,3,6) or (0,2,9,6) 

= prime form (0,2,5,8) set class 4–27, ic vector [012111] 
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of the original set class has been transposed, at one of four possible levels:T0,T6,
T4 or T8. In the case of the latter three transpositions, a T4 + T4 + T4 = T0 or
T8 + T8 + T8 = T0 process (for M5 operations) or a T6 + T6 = T0 process (for M7

operations) will be required of either of the set classes involved before the
original transpositional level is restored. Transpositional cycles of this type can
be demonstrated in Berg’s Op. 5, where there are numerous prominent and
interrelated instances of the Z/M-related pair 6–Z19 (0,1,3,4,7,8) and 6–Z44
(0,1,2,5,6,9), most of them occurring at the start and end of each of the four
pieces. These instances will fit into T4 and T8 cyclic processes: those for 6–Z44
follow temporal paths, as shown in Fig. 5a, while the one for 6–Z19 is less clearly
defined compositionally, as shown in Fig. 5b. Consequently, a sixfold M5 cycle of
transformationally interrelated 6–Z44s and 6–Z19s can be set up incorporating
theT4 cycles for each hexachord. The pitch-class correlations highlighted by this
(theoretical) sixfold cycle are not entirely accidental, given Berg’s predilection
for many of these pitch classes at the beginnings and ends of the four pieces.
Although theoretically there are seven other sixfold M5 cycles involving interre-
lated 6–Z44s and 6-Z19s and incorporating other pitch-class correlations, only
this particular one predominates in Op. 5.83

The M5/M7 procedure is of particular interest to the analyst because it throws
up a very different division of the set classes. These are shown in Table 9 for
cardinals 2 to 6 only. The centrally placed groups of M-invariant (self-mapped)
set classes for each cardinality (53 in all) includes eight Z-hexachords and two
Z-pentachords which, in this context, now subsist as autonomous entities,
unconnected to their Z-partners, while the symmetrically, more remotely placed
group of M-related (reciprocally mapped) pairs for each cardinality, labelled ‘a’,
‘b’, and so on, now incorporates a mixture of non-Z, Z-related and mixed-Z
pairings. All set-class entries in Table 9 show their ics 1/5 content and their ics
2/3/4/6 content separated into two columns. In retrospect, we can now see that

Fig. 5 Berg, Op. 5: cyclic set class patterns
(a) T8 and T4 cyclic patterns of instances of set class 6–Z44 (0,1,2,5,6,9)
(b) T4 cyclic pattern of instances of set class 6–Z19 (0,1,3,4,7,8)

(a)

(b)

T8

T4

T4 T4 T4

T4

T8 T8

I/1, T0 I/9, T8 III/1, T4 III/14–18,T0

IV/2 and IV/6–18, T0

I/9, T8 II/1–2, T0             III/1, T0 

II/1–4, T0 I/9, T4        I/6–7, T8               IV/3, T0 
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Table 9 The M5/M7-related pairs of set classes (labeled ‘a’, ‘b’, etc.) and M5/M7-
invariant set classes, all with their ics 1/5 and ics 2/3/4/6 interval-class vector content
separated

Cardinals 2,
3 and 4

ics
1/5

ics
2/3/4/6

Cardinal 5 ics
1/5

ics
2/3/4/6

Cardinal 6 ics
1/5

ics
2/3/4/6

+ 2–1 a [10] [0000] ++++ 5––1a [40] [3210] ++++ 6––1 a [51] [4320]
2–2 [00] [1000] ++ 5–2 b [31] [3210] +++ 6–2 b [41] [4321]
2–3 [00] [0100] ++ 5–3 c [31] [2220] ++ 6–Z3 c [42] [3321]
2–4 [00] [0010] ++ 5–4 d [31] [2211] ++ 6–Z4 d [42] [3231]
2–6 [00] [0001] ++ 5–8 e [20] [3221] ++ 6–Z36 e [42] [3321]
+ 2–5a [01] [0000] + 5–5 f [32] [2111] ++ 6–Z37 f [42] [3231]
++ 3–1a [20] [1000] + 5–6 g [32] [1121] + 6–5 g [43] [2222]
+ 3–2 b [10] [1100] + 5–9 h [21] [3121] + 6–Z10 h [32] [3331]
+ 3–3 c [10] [0110] + 5–10 i [21] [2311] + 6–Z39 i [32] [3331]
3–4 [11] [0010] + 5–13 j [21] [2131] + 6–15 j [32] [2341]
3–5 [11] [0001] + 5–16 k [21] [1321] + 6–Z13 k [32] [2422]
3–6 [00] [2010] 5–Z17 l [22] [1230] + 6–Z42 l [32] [2422]
3–8 [00] [1011] 5–Z18 m [22] [1221] + 6–21 m [12] [4242]
3–10 [00] [0201] 5–7 [33] [1012] 6–Z6 n [44] [2122]
3–12 [00] [0030] 5–11 [22] [2220] 6–Z19 o [33] [1341]
+ 3–11 c [01] [0110] 5–Z12 [22] [2211] 6–Z11 p [33] [3321]
+ 3–7 b [01] [1100] 5–Z36 [22] [2211] 6–7 [44] [2023]
++ 3–9a [02] [1000] 5–15 [22] [2022] 6–8 [33] [4320]
+++ 4–1a [30] [2100] 5–19 [22] [1212] 6–9 [33] [4221]
++ 4–2 b [20] [2110] 5–21 [22] [0240] 6–Z12 [33] [3222]
++ 4–3 c [20] [1210] 5–22 [22] [0231] 6–14 [33] [2340]
+ 4–4 d [21] [1110] 5–26 [11] [2231] 6–16 [33] [2241]
+ 4–5 e [21] [1011] 5–28 [11] [2222] 6–Z17 [33] [2232]
+ 4–7 f [21] [0120] 5–31 [11] [1412] 6–20 [33] [0360]
+ 4–12 g [10] [1211] 5–33 [00] [4042] 6–Z41 [33] [3222]
4Z15 h [11] [1111] 5–Z38 m [22] [1221] 6–Z43 [33] [2232]
4–6 [22] [1001] 5–Z37 l [22] [1230] 6–22 [22] [4142]
4–8 [22] [0011] + 5–32 k [12] [1321] 6–Z23 [22] [3422]
4–9 [22] [0002] + 5–30 j [12] [2131] 6–27 [22] [2522]
4–10 [11] [2200] + 5–25 i [12] [2311] 6–Z28 [22] [2432]
4–11 [11] [2110] + 5–24 h [12] [3121] 6–30 [22] [2423]
4–13 [11] [1201] + 5–20 g [23] [1121] 6–Z45 [22] [3422]
4–17 [11] [0220] + 5–14 f [23] [2111] 6–Z49 [22] [2432]
4–18 [11] [0211] ++ 5–34 e [02] [3221] 6–35 [00] [6063]
4–19 [11] [0130] ++ 5–29 d [13] [2211] 6–Z40 p [33] [3321]
4–21 [00] [3021] ++ 5–27 c [13] [2220] 6–Z44 o [33] [1341]
4–24 [00] [2031] ++ 5–23 b [13] [3210] 6–Z38 n [44] [2122]
4–25 [00] [2022] ++++ 5–35 a [04] [3210] + 6–34 m [21] [4242]
4–28 [00] [0402] + 6–Z29 l [23] [2422]
4–Z29 h [11] [1111] + 6–Z50 k [23] [2422]
+ 4–27 g [01] [1211] + 6–31 j [23] [2341]
+ 4–20 f [12] [0120] + 6–Z24 i [23] [3331]
+ 4–16 e [12] [1011] + 6–Z46 h [23] [3331]
+ 4–14 d [12] [1110] + 6–18 g [34] [2222]
++ 4–26 c [02] [1210] ++ 6–Z48 f [24] [3231]
++ 4–22 b [02] [2110] ++ 6–Z47 e [24] [3321]
+++ 4–23 a [03] [2100] ++ 6–Z26 d [24] [3231]

++ 6–Z25 c [24] [3321]
+++ 6–33 b [14] [4321]
++++ 6–32 a [15] [4320]

Note: The number of plus (+) symbols equals the difference between ics 1 and 5.
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M5/M7 relations have been pervasive through much of the discourse of this
article so far. In Table 5, for instance, generated M-related set classes are cross-
referenced between 20 of the 30 combination cycles.84 Similarly, in Table 6 (the
hexachord families), Tables A1–A6 (the BIG chains arranged by genus) and
Table 8 (the lists of genera), M-related set classes always appear together within
Hexatonic, Bichromatic,Whole-Tone and Octatonic lists, and are either opposed
one-to-one or correlated in the Diatonic and Chromatic.85

Despite Forte’s insistence that his twelve genera display a metaphorical spec-
trum, from the ‘traditional’ or ‘ancient’ diatonic (genera 11 and 12) to the
‘exotic’ or ‘modern’ atonal (genera 1, 2 and 3), the M relation can nevertheless
be shown to permeate even his ‘context insensitive’ system.86 By signalling that
there are ‘marked similarities between diatonic and chromatic collections’, as
distributed between his genera, he has more than hinted at such an arrangement,
although he has not explicitly described it.87 His diatonic-to-exotic spectrum can
be reinterpreted alternatively as a diatonic-to-chromatic spectrum, where the
more ‘atonal’ areas inform, or are informed by, the diatonic and chromatic
ones.88 It would seem, then, that the M5 procedure will inevitably give rise to an
invaluable hierarchical ‘spread’ of all set classes, furnishing a distinct shape or
profile to the whole set-class universe as well as to each of the genera.89 Quinn
has pointed out that the M operation ‘brings together species [set classes] that
play the same role in two different qualitative genera [diatonic and chromatic] that
are wholly M-related to one another’, in other words, as exemplified by the
Diatonic and Chromatic genera set out in Table 8.90 Moreover, it is clear that all
M-invariant, self-mapping set classes are either both Diatonic and Chromatic or
neither.91 So, since M5 equivalences have been produced through the cycle of
fourths/fifths transform, we are in a way looking at all set classes though a
diatonic-to-chromatic filter or prism of affinity. All set classes take their positions
as part of an all-inclusive spectrum ranging from purely diatonic to purely
chromatic, a spectrum which embraces not only the diatonic and chromatic
‘crossover’ set classes, but also the members of the other genera on the way,
extending between the diatonic and chromatic extremes.92

In order to justify the diatonic-to-chromatic spectrum, as shown for each
cardinality in Table 9, we can turn to Samplaski’s set-class mappings, as dem-
onstrated in two of his dimensional histograms: his figs 7 and 11, which both
show diatonic-to-chromatic spectra for all set classes of cardinals 3, 4 and 5,
ordered according to ‘ic1-saturation vs. ic5-saturation’.93 Not only have the
constituent set classes from all M-related pairs been separated, they have been
symmetrically and systematically spread throughout. The similarity/dissimilarity
relations within these symmetrically distributed scalings can be translated into
tangible degrees of affinity and distance between set classes. The M-related set
classes with the widest difference between ics 1 and 5 are placed at the extremes
of the scalings, followed by those slightly less so, and so on, with the M-invariant
set classes at the centre. Samplaski has observed this phenomenon precisely,
although without specifically referring to the M5 relation.94 He finds that, in both
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methods of scaling, a large number of the sets are clustered closely together
around the central zero-point (i.e. the M-invariant set classes that are neither
particularly similar nor dissimilar).95

Samplaski’s other histograms, showing scalings from one typicality to another,
prove less useful for uncovering a spread of affinity within any of the other four
genera.96 For a consideration of the totality of all six genera, then, it will be
necessary to change direction somewhat and look afresh at the particular
interval-class characteristics of each genus, as epitomised by the prototypical
hexachords shown in Table 2. Thus, as already demonstrated, Diatonic set
classes could be characterised by high ic 5 versus (minus) low ic 1, and Chro-
matic by high ic 1 versus (minus) low ic 5.97 Beyond this, Hexatonic set classes
are characterised by high ic 4 versus (minus) low ics 2 and 6; Bichromatic by
high ics 1, 5 and 6 versus (minus) low ics 2, 3 and 5; Octatonic by high ics 3 and
6 versus (balanced against) an even distribution of ics 1, 2, 4 and 5; and
Whole-Tone by high ics 2, 4 and 6 versus (minus) low ics 1, 3 and 5. Scalings for
all set classes of cardinals 2 to 6 can be worked out for each genus based on these
characteristics.98 Because these scalings turn out to range between eight and
fifteen affinity levels, a result of the application of the different interval-class
parameters to each genus, for the sake of consistency I have decided to place set
classes on a reduced platform of seven levels for each genus so that relative
distances can be judged and cross-generational comparisons can most effectively
be made. This has meant that in each case some adjacent levels, particularly
those at the most typical end of the spectrum, have had to be conflated.99 The
level of affinity of any set class to each genus prototype can now be set out, as
illustrated in the six columns of genera inTable 10, such that a value of 1 denotes
maximum affinity to the prototype, a value of 7 denotes minimum typicality, and
so on. In particular, level 4 represents those central set classes that are most
indifferent or neutral. As might be expected, it can again be observed that
M-related set classes are valued identically, except that diatonic and chromatic
affinities are reversed, level 1 translating to 7, level 2 to 6 and level 3 to 5.100

Table 10 allows the measurement of distance between all set classes to be gauged
either vertically (i.e. intragenerically for all set classes across each individual
genus, both against each other and against the prototypical hexachord) or
horizontally (i.e. intergenerically for each set class across all six genera) by noting
the difference between numerical values.101 It can be seen that, in nearly all cases,
genus members (those with numerical values in bold) rate appropriately low,
confirming their affinity leanings. We can also note that the most ‘neutral’ set
classes with the largest number of values at or close to 4 correlate closely with the
ones that have an almost even spread of ics within their ic vectors.102

Taken together, the M-related lists (Table 9) and the affinity scalings
(Table 10) provide ample further evidence to support several of the key criteria
required for the spatial organisation and effective relational arrangement of
a system of genera: closely and distantly related sonorities (key criterion 1),
‘quality space’ determined by similarity relations through the (computational)
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Table 10 Genus scalings from most typical (1) to least typical (7) based on the
characteristic interval-class content of each prototypical hexachord

C W O H D B C W O H D B C W O H D B
6–1 1 7 5 5 7 5 5–1 1 6 5 5 7 4 4–1 1 6 4 5 7 4
6–2 1 5 4 7 7 5 5–2 2 6 4 5 6 4 4–2 2 4 4 4 6 4
6–Z3/6–Z36 2 7 3 5 6 5 5–3 2 6 4 3 6 4 4–3 2 6 4 3 6 4
6–Z4/6–Z37 2 5 4 4 6 5 5–4 2 6 3 5 6 3 4–4 3 6 4 3 5 4
6–5 3 7 3 5 5 2 5–5 3 6 4 5 5 3 4–5 3 4 4 3 5 3
6–Z6/6–Z38 4 7 4 5 4 2 5–6 3 6 4 3 5 3 4–6 4 6 4 5 4 2
6–7 4 5 4 7 4 1 5–7 4 6 4 5 4 1 4–7 3 6 4 2 5 4
6–8 4 7 4 5 4 5 5–8 2 3 4 5 6 5 4–8 4 6 4 3 4 2
6–9 4 5 4 7 4 5 5–9 3 3 4 5 5 4 4–9 4 6 4 5 4 1
6–Z10/6–Z39 3 5 3 4 5 5 5–10 3 6 2 5 5 4 4–10 4 6 4 5 4 5
6–Z11/6–Z40 4 7 3 5 4 5 5–11 4 6 4 3 4 5 4–11 4 4 4 4 4 5
6–Z12/6–Z41 4 5 3 7 4 3 5–Z12/5–Z36 4 6 3 5 4 4 4–12 3 4 3 3 5 4
6–Z13/6–Z42 3 7 2 5 5 5 5–13 3 3 4 3 5 4 4–13 4 6 3 5 4 4
6–14 4 7 4 2 4 5 5–14 5 6 4 5 3 3 4–14 5 6 4 3 3 4
6–15 3 5 3 2 5 5 5–15 4 3 4 5 4 3 4–Z15/4–Z29 4 4 4 4 4 4
6–16 4 5 4 2 4 5 5–16 3 6 2 3 5 4 4–16 5 4 4 3 3 3
6–Z17/6–Z43 4 5 3 4 4 3 5–Z17/5–Z37 4 6 4 2 4 4 4–17 4 6 4 2 4 4
6–18 5 7 3 5 3 2 5–Z18/5–Z38 4 6 3 3 4 4 4–18 4 6 3 3 4 4
6–Z19/6–Z44 4 7 4 2 4 5 5–19 4 6 2 5 4 3 4–19 4 4 5 1 4 5
6–20 4 7 6 1 4 5 5–20 5 6 4 3 3 3 4–20 5 6 4 2 3 4
6–21 3 2 4 5 5 6 5–21 4 6 5 1 4 4 4–21 4 2 4 5 4 5
6–22 4 2 4 5 4 5 5–22 4 6 4 2 4 4 4–22 6 4 4 4 2 4
6–Z23/6–Z45 4 5 2 7 4 5 5–23 6 6 4 5 2 4 4–23 7 6 4 5 1 4
6–Z24/6–Z46 5 5 3 4 3 5 5–24 5 3 4 5 3 4 4–24 4 2 4 3 4 5
6–Z25/6–Z47 6 7 3 5 2 5 5–25 5 6 2 5 3 4 4–25 4 2 4 5 4 4
6–Z26/6–Z48 6 5 4 4 2 5 5–26 4 3 3 3 4 5 4–26 6 6 4 3 2 4
6–27 4 7 1 5 4 5 5–27 6 6 4 3 2 4 4–27 5 4 3 3 3 4
6–Z28/6–Z49 4 5 2 4 4 5 5–28 4 3 2 5 4 4 4–28 4 6 1 5 4 4
6–Z29/6–Z50 5 7 2 5 3 5 5–29 6 6 3 5 2 3 3–1 2 5 4 4 6 3
6–30 4 5 1 7 4 5 5–30 5 3 4 3 3 4 3–2 3 5 3 4 5 5
6–31 5 5 3 2 3 5 5–31 4 6 1 5 4 4 3–3 3 5 3 2 5 5
6–32 7 7 5 5 1 5 5–32 5 6 2 3 3 4 3–4 4 5 4 2 4 3
6–33 7 5 4 7 1 5 5–33 4 1 6 5 4 6 3–5 4 5 3 4 4 3
6–34 5 2 4 5 3 6 5–34 6 3 4 5 2 5 3–6 4 2 4 4 4 5
6–35 4 1 7 7 4 7 5–35 7 6 5 5 1 4 3–7 5 5 3 4 3 5

3–8 4 2 3 4 4 5
3–9 6 5 4 4 2 3

– 3–10 4 5 1 4 4 5
3–11 5 5 3 4 3 5
3–12 4 2 4 1 4 5
2–1 3 5 2 3 5 4
2–2 4 3 2 4 4 5
2–3 4 5 2 3 4 5
2–4 4 3 2 2 4 5
2–5 5 5 2 3 3 4
2–6 4 3 2 4 4 4

Key: C = Chromatic
W = Whole-tone
O = Octatonic
H = Hexatonic
D = Diatonic
B = Bichromatic

Note: Numerals in bold represent genus members.
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application of a numerical index and a hierarchical taxonomy (key criterion 2),
the relation of sonorities to distances in space (key criterion 4), the intrageneric
and intergeneric affinities of sets within and between regions (key criterion 5),
the inherence of set-class quality with set-class equivalence in both their interval
content and transformational symmetries (key criterion 7) and the spatial struc-
turing of set-class affinities through qualitative closeness to or distance from the
genus prototypes (key criterion 9). The precise spatial organisation and rela-
tional arrangement of all set classes are, however, dependent on the final stage of
this odyssey: the invention of an appropriate spatial model.

V. Looking at Some Multi-Dimensional Models, Finally Arriving at
the Creation and Plotting of a Systematised Three-Dimensional
Set-Class Space

We can start this final stage of the odyssey by attempting to satisfy key criterion
8: that genus prototypes should occupy distant points in set-class space. Just as
the M5-induced spectra of Table 9 (and Samplaski’s diatonic-to-chromatic his-
tograms) are one-dimensional, so they can be arranged as a one-dimensional axis
enclosed at its poles by the diatonic and chromatic prototype hexachords, 6–32
(0,2,4,5,7,9) and 6–1 (0,1,2,3,4,5). Atte Tenkanen has foreseen a problem in
graphically representing set classes such as 6–1 (0,1,2,3,4,5), 6–32 (0,2,4,5,7,9)
and 6–8 (0,2,3,4,5,7), since they may end up occupying the same space owing to
identical ics 2, 3, 4 and 6 in their interval-class vectors (i.e. [543210], [143250]
and [343230] respectively).103 My intention to give polar placements to set
classes 6–32 (0,2,4,5,7,9) and 6–1 (0,1,2,3,4,5) indicates that they are at once
both opposites and mirror images; it follows that a central placement on the
Diatonic-to-Chromatic axis for set class 6–8 (0,2,3,4,5,7) would indicate that it
shares Diatonic and Chromatic interval-class attributes in equal measure. Other
set classes placed on this spectrum would either be M-related, mirrored set
classes or would, like 6–8, occupy the central, balancing M-invariant point, either
as Chromatic and Diatonic representatives or as neither.

To date, a few two- and three-dimensional models have been proposed for a
wider group of genera. Eriksson’s graphic representation of his seven regions was
the first of these, displaying three main areas.104 More recently, Quinn has offered
three illustrations of intergeneric and intrageneric affinities.The first is a triangular
arrangement taken from Morris.105 The second is a Cartesian plane modelling a
chromatic-to-diatonic transition between seven ‘harmonic states’ taken from a
piece by Ligeti.106 Quinn’s third illustration is of a hexatonic-to-whole-tone
progression of eleven hexachords, all of which have a high ic 4 content and
incorporate Rp, R1, R2 and M5 similarity relations.107 Two-dimensional voice-
leading spaces have been provided by Callender, Quinn and Tymoczko for
trichords and tetrachords, while three-dimensional models have been devised by
Straus, illustrating voice-leading spaces for each of the cardinalities and for
adjacent cardinalities.108 Cohn has designed an interactive tetrahedral example,
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based on one of Straus’s models, showing voice-leading similarities between the
29 tetrachord set classes; this is also represented three-dimensionally in Callender,
Quinn, and Tymoczko.109 Finally, Tenkanen has produced a three-dimensional
graph comparing a selection of eighteen trichords and tetrachords.110

A multi-dimensional model capable of showing intergeneric correlations has
not been attempted before now. Cohn highlights the problem when he warns
that this would be ‘easy to state but hard to intuit, harder yet to explore, yet
again to demonstrate’.111 Nevertheless, Quinn has proposed a way forward
through his assertion that ‘[t]he M operation corresponds to a reflection (flip)
about a vertical line running through the center’.112 This implies that the other
four genus prototypes would, as M invariants, have to be positioned centrally
on this Diatonic-to-Chromatic ‘axis of reflection corresponding to M’, since
‘the centers of these [four] genera lie directly on the axis of symmetry in
question’. It further implies that these four genera would themselves congregate
around them in M5 space, since ‘M5 preserves the intrageneric affinities of these
other four genera’.113 Cohn has confirmed that these four collections perform
an undermining role, since they insinuate their different qualities [spaces] onto
the normal diatonic/chromatic ones, thus acting as ‘pivots between diatonic and
chromatic space’.114

My suggestion, then, is that the precise symmetry of the one-dimensional M5

construct could be used as a basis for the creation of a three-dimensional
representation of the complete system of genera. I propose that a productive way
towards delivering this would be to grant the four non-diatonic/chromatic
foci, 6–7 (0,1,2,6,7,8), 6–20 (0,1,4,5,8,9), 6–30 (0,1,3,6,7,9) and 6–35
(0,2,4,6,8,10), their own spatial ‘homes’ at distant points on M-invariant axes
placed perpendicular to that of the diatonic-to-chromatic axis, making manifest
their unique interval-class characteristics and ‘lonely’ situation within the set-
class universe. Their associated families would then encircle and envelop the
diatonic-to-chromatic axis three-dimensionally, somewhat like a corona.115 I
suggest that the familiar shape of a transparent globe, shown in Fig. 6, could be
the most appropriate means of representing this arrangement in a relatively
unambiguous way. The Chromatic and Diatonic prototypes would take the
globe’s ‘north’ and ‘south’ pole positions, while the other four prototypes would
take the ‘east’, ‘west’, ‘close’ and distant’ positions around the globe’s ‘equator’.
The equatorial horizontal circular plane cutting through the globe represents
Quinn’s (and Samplaski’s) M5 (M-invariant) axis of symmetry.116 The Hexa-
tonic and Whole-Tone nodes are best placed adjacent to each other (i.e. at 90
degrees rotationally), reflecting their mutual derivation from set class 3–12
(0,4,8) origins (see again Table 5), while the Bichromatic and Octatonic nodes
can occupy the opposite adjacencies, making manifest the several BIG chains
that they have in common.117 The six genus nodes of Fig. 6 can be considered to
be roughly equidistant, thereby reflecting the basic dissimilarity between the six
hexachordal progenitors but also allowing the elaboration required for the ulti-
mate placement of all of the set classes to be accommodated.118
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Fig. 6 shows how the six genus nodes form the limit points for three axes
passing through the globe, Diatonic to Chromatic, Hexatonic to Bichromatic
and Whole-Tone to Octatonic.119 It also shows three intersecting ‘great’ circles,
two running north to south and back, and one running laterally as the globe’s
‘equator’. Each of the three great circles crosses four genus nodes, and taken
together they connect the six genus nodes in twelve more ways.120 The total of
fifteen two-genus (intergeneric) coordinates implied by these three axial and
twelve great-circle connections can most practically be placed midway between
each of the fifteen pairings of genus nodes; all but one of these are also shown in
Fig. 6.121 These fifteen two-genus nodes in turn offer the opportunity for eight

Fig. 6 Placement of intergeneric points on the globe
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three-genus points of interface to be placed. Finally, three horizontal circular
planes can cut through the globe, a larger one aligned to the equator and the
smaller ones slicing through the northern and southern ‘hemispheres’. These
horizontal planes allow for the placement of a final 34 internal points of inter-
face, of between three and six levels of intersection. While Fig. 6 only shows
those placements for points of generic intersection that actually occur between
the six genera (as in Table 11), Figs 7a, b and c show all of the potential
intergeneric placements on the three horizontal planes (those in parentheses are
theoretically but not actually present).122

Although it is not possible to place individual set classes according to precisely
measured unit distances from a genus ‘limit case’, as advocated by Quinn
through his fuzzified ‘lewin’ distances (derived from Fourier balances),123 it will
nevertheless now be possible to give fairly accurate placements on and within the
globe by collating points of intersection with the criteria presented in Tables 8
and 9. All set classes can then be assigned and located according to their
membership, either to one of the 6 genus nodal ‘hot spots’ or to one of the 57
points of intersection between these genus nodes as they appear in Figs 6 and 7.
Although these intersection placements of set classes have the initial disadvan-
tage of being approximate, they nevertheless have the crucial advantage of being
automatically assigned within the three-dimensional space. Whereas Quinn’s
Fourier balance–induced model will produce coordinated placements between
just two genera, I have created intersections that allow the coordination of set
classes in any number of different intergeneric ways while at the same time
creating intrageneric placements as well.124 Accordingly, nodal points of inter-
section in many cases represent intergeneric and intrageneric affinities at one and
the same time.

Several potential anomalies arise at this stage in the construction, caused
by the contraction of the theoretically ideal (but impractical) five- or six-
dimensional set-class space to only three dimensions. In practice, these do not
present too much of a problem. For instance, although three unrelated two-
genus interfaces, three unrelated interfaces involving four genera and the six-
genus interface all theoretically occupy the central node of the equatorial
horizontal plane (and of the globe), there happens to be no Hexatonic/
Bichromatic interface, nor do any of the three theoretical four-genus interfaces
actually appear in practice.125 Again, although theoretically two three-genus
interfaces and one five-genus interface all occupy the central node of the north-
ern horizontal plane, fortuitously these interfaces have not materialised, and the
node is therefore empty. Similarly, although two three-genus interfaces and one
five-genus interface all theoretically occupy the central node of the southern
horizontal plane, these interfaces do not exist either, so this node is also con-
veniently empty. Some of the internal interfaces on the Whole-Tone-to-
Octatonic and Hexatonic-to-Bichromatic axes on the equatorial horizontal plane
are inevitably crowded together, and in some cases a pragmatic positional choice
has had to be made. Nevertheless, these choices do have directional consistency
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Fig. 7 ‘Geographical’ planes
(a) ‘Northern’ plane: 15 points of interface
(b) ‘Southern’ plane: 15 points of interface
(c) ‘Equatorial’ plane: 4 genus nodes and 31 points of interface
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along both axes. In practice, this difficulty is somewhat alleviated, as before, by
the absence of some of these theoretical interfaces.

The process of genus intersection, although essentially the final part in a
hierarchical process of reduction of pitch-class set information, will necessarily
require one final expansion of that information involving the collation of all
genus memberships (from Table 8) in order to create a catalogue (Table 11)
illustrating all forms of intergeneric membership. In addition to the six categories
involving just one genus, marked ‘1’ in column 1 of Table 11 (i.e. the areas of
extreme typicality and exclusivity), there are theoretically 57 other forms of
intersection, nineteen of which are empty and therefore not included.126 It can be
noted that chains of contiguous set classes in any intersection row in column 3
often match lines of linkage found in the BIG chains of Tables A1–A6, although
in some cases they produce different cross-generic associations. Either way, these

Fig. 7 Continued
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Table 11 Generic intersections and their member set classes

No. of
genera

Generic
intersection

Set classes

1 Dia node 5–23/5–35/6–Z24/6–Z25/6–Z26/
6–32/6–33/6–Z46/6–Z47/6–Z48

1 Chr node 5–1/5–2/6–1/6–2/6–Z3/6–Z4/
6–Z10/6–Z36/6–Z37/6–Z39

1 Hexa node 5–Z17/5–21/5–22/5–Z37/
6–16/6–Z19/6–20/6–Z44

1 Octa node 4–Z15/4–28/4–Z29/5–31/6–Z13/
6–Z23/6–27/6–Z28/6–Z29/6–30/
6–Z42/6–Z45/6–Z49/6–Z50

1 Bichr node 4–6/4–8/6–Z6/6–7/6–Z38
1 WT node 5–33/6–35
2 Dia/Chr 6–8/6–9/6–Z11/6–Z40
2 Dia/Hexa 4–20/5–27/6–31
2 Dia/Octa 4–26
2 Dia/Bichr 4–23/5–14
2 Dia/WT 5–34
2 Chr/Hexa 4–7/5–3/6–15
2 Chr/Octa 4–3
2 Chr/Bichr 4–1/5–5
2 Chr/WTe 5–8
2 Hexa/Octa 4–17
2 Hexa/WT 3–12/4–19/4–24
2 Octa/Bichr 3–5/4–9/5–7/5–15/5–19/6–5/

6–Z12/6–Z17/6–18/6–Z41/6–Z43
2 Octa/WT 6–21/6–34
2 Bichr/WT 6–22
3 Dia/Chr/Hexa 5–11/6–14
3 Dia/Chr/Octa 3–2/3–7/4–10/5–10/5–25
3 Dia/Chr/WT 3–6/4–11/4–21
3 Dia/Hexa/Octa 3–11/5–32
3 Dia/Octa/Bichr 5–29
3 Chr/Hexa/Octa 3–3/5–16
3 Chr/Octa/Bichr 5–4
3 Hexa/Octa/WT 5–26
3 Hexa/Bichr/WT 5–13/5–30
3 Octa/Bichr/WT 2–6/3–8/4–25/5–28
4 Dia/Chr/Hexa/Octa 2–3/3–10
4 Dia/Chr/Octa/Bichr 4–13/(5–Z12)/5–Z36
4 Dia/Chr/Bichr/WT 5–9/5–24
4 Dia/Hexa/Octa/Bichr 3–9/4–14/4–16/5–20/5–Z38
4 Dia/Hexa/Octa/WT 4–27
4 Chr/Hexa/Octa/Bichr 3–1/4–4/4–5/5–6/5–Z18
4 Chr/Hexa/Octa/WT 4–12
5 Dia/Chr/Hexa/Octa/Bichr 2–1/2–5/3–4/4–18
5 Dia/Chr/Hexa/Bichr/WT 4–2/4–22
5 Dia/Chr/Octa/Bichr/WT 2–2
6 Dia/Chr/Hexa/Octa/Bichr/WT 2–4

Key: Dia = Diatonic
Chr = Chromatic
Hexa = Hexatonic
Octa = Octatonic
Bichr = Bichromatic
WT = Whole-Tone
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horizontal lists in column 3 pinpoint intergeneric lines of affinity. The most
notable of these link the Octatonic to the Bichromatic, since these two generic
areas are to some extent distinct from the other four through their common set
classes. Two more features of Table 11 can be observed. Firstly, M relations
are conserved, as before, within and between generic intersections. Secondly,
Z-related pairs of set classes always occupy the same form of intersection and so
will occupy the same point in set-class space, as they do in Quinn’s Fourier
balances. Although most forms of intergeneric affinity in Table 11 contain set
classes of differing cardinalities, each form will nevertheless become a single
general point of interface on or within the globe.

Now that the initial distribution of set classes onto points of genus intersection
has been made, any more precise plotting and positioning of set classes and any
‘finer distinction’ of affinities relative to the prototypical hexachords or to other
associated set classes will need to be facilitated in more subtle ways.127 These
more precise positions can be altered principally through reference to each set
class’s generic affinity, that is, its distance from each of the prototypes, as codified
in Table 10, but also to its slightly different placement relative to whether it has
priority as either a true subset of the genus prototype hexachord (bold type in
Table 8) or as an ‘exclusive’ (displaying the prototypical interval-class vector
patterns of Table 2 and Table 7). Fig. 8 shows all of these final set-class place-
ments, uncluttered by other labels.128 This final diagram has two additional
horizontal planes cutting across the globe, so that the diagram can reflect all five
of the intermediary levels within the Diatonic-to-Chromatic spectrum; final
set-class placements must be viewed in relation to all five of these planes and the
lines radiating from the central nodes of each. Once again, M-related set classes
are still symmetrically arranged about a central area, the equatorial plane. It must
be re-emphasised that although set-class placements are still somewhat approxi-
mate, they nevertheless show real-space affinity relations across the planes,
between each of the planes and around the surface of the globe. Relative
closeness or distance between set classes is illustrated by the perceived distances
between them in the three-dimensional space. The illustration is therefore prop-
erly equipped to reflect affinities, to the extent that adjacent set classes nearly
always register as having identical or similar affinity values when one reads
horizontally across the six genus columns of Table 10. This similarity is espe-
cially noticeable between the three dyads, 2–2, 2–4 and 2–6, joined together in
Fig. 8 by a line in the central disc of the equatorial plane.

In essence, Figs 6, 7 and 8 show that each of the six overlapping hemispheres
(northern, southern, eastern, western, front-facing and rear-facing) represent the
radiating domain of one genus, although never entirely so, demonstrating aspects
of that ‘radial structure’ of set-class space envisioned by Quinn.129 They also
show that the horizontal planes to the north and south reflect an interface of any
combination of the Hexatonic, Bichromatic, Octatonic or Whole-Tone genera
with either the Chromatic or the Diatonic (but not both), and that the central,
‘equatorial’ plane reflects both the Chromatic-with-Diatonic interface (some-
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times with others as well) and the neither-Chromatic-nor-Diatonic interface (i.e.
exclusively some combination of Hexatonic, Bichromatic, Octatonic or Whole-
Tone).130 Clearly, the Hexatonic, Bichromatic, Octatonic and Whole-Tone areas
do not encroach on the Diatonic and Chromatic ‘homeland’ stretching horizon-
tally between the north and south poles, nor do the Diatonic and Chromatic
areas extend as far as the exterior equatorial rim controlled by the other four.131

Although the very central core of the globe is, as a matter of practical
necessity, occupied by the Diatonic/Chromatic and Whole-Tone/Octatonic
crossover set classes, 6–8/6–9 (0,2,3,4,5,7)/(0,1,2,3,5,7), 6–Z11/6–Z40
(0,1,2,4,5,7)/(0,1,2,3,5,8) and 6–21/6–34 (0,2,3,4,6,8)/(0,1,3,5,7,9), logically

Fig. 8 The three-dimensional set-class space
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6–35/ 
5–33
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the wider central core of the three-dimensional space is also inherently occupied
by those other interior set-class groupings which do not strongly display any
particular genus property but which stand gregariously at the interface between
several genera. These include those set classes identified as having the highest
genus membership in Tables 8 (marked ‘+’) and 11, as being central in Sam-
plaski’s histograms and as having a preponderance of neutral level ‘4’ values in
Table 10. On this basis, the most neutral set classes in generic terms also
generally have the most neutral (i.e. balanced) array of interval-class vectors.
These set classes are variously described as ‘neutral’, odourless’ and ‘social’ by
Tenkanen, as ‘low-class’ by Forte and as ‘garbage’ by Samplaski; they are further
described by Forte as having ‘shirttail’ status.132 It is his view that, although many
of these central sets are clearly of analytical importance within the atonal rep-
ertoire, others may not belong to any genus in any clear sense and may therefore
prove to be analytically unusable in terms of genus membership. We could call
these sets ‘weak joiners’, as opposed to the more exclusively situated ‘strong
loners’ to be found on the outer surface of the sphere. We could also say that
weak joiners are weakly intrageneric but more strongly intergeneric in the way
that they associate with other set classes, while strong loners are correspondingly
stronger intragenerically but weaker intergenerically. We could equally say that
weak joiners weakly display (i.e. balance up) those high or low interval-class
vector scores characteristic of their (nominal) genera, while strong loners display
them strongly. Since the weak joiners are anti-scale and anti-collectional, we
might even consider them to be the most ‘atonal’ in quality.

So what interrelationships and particular qualities do the specific regions
display, if any? In the first place, we can observe that the Whole-Tone region,
uniquely, has no Z-paired set classes and has an evenly balanced but small level
of interface with each of the other five genera, reflecting its equal degree of
remoteness from the other five. As Tenkanen and Forte have remarked of its
purely whole-tone progenitor, ‘that poor guy 6–35 [(0,2,4,6,8,10)] without
friends’ is indeed a ‘notoriously antisocial creature’.133 By contrast, the partially
related Bichromatic and Octatonic regions proffer the highest level of interface,
with 33 set-class counts. Overall, each genus region displays well-connected
pathways and agreeably compact structures radiating from its nodal point. Since
intrageneric and intergeneric distance is measured according to a set class’s level
of affinity to the prototypical hexachord, the farther away, in spatial terms, a
particular set class is from its prototype (displaying higher numerical values in
Table 10), the more likely it is to have some degree of affinity to one or more of
the other generic areas, until a point is reached when that set class is better
categorised as being in a balanced (neutral) state of genus membership (display-
ing the value ‘4’ in Table 10) or, ultimately, as being more closely related to one
or more of the other prototypes (displaying lower numerical values in Table 10).
These more distantly linked set classes, which might have been included in a
particular genus under less stringent membership criteria, will actually always
turn out to be correspondingly closer to other generic areas. It must be remem-
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bered, though, that a few neutral set classes, such as 5–Z12 (0,1,3,5,6), seem to
demand to be considered a ‘limit case’ of their own because of their strong
disinclination to join any genus.134 By contrast, because ic 4 is the only interval
class found in all pentachords and hexachords, set class 2–4 (0,4) is, unsurpris-
ingly, the ultimate cross-generational set class.

Taking the wider perspective, although the global arrangement does not have
lateral axial symmetry, that is, between the Hexatonic and Bichromatic and
between the Whole-Tone and Octatonic areas, it does display a perfect vertical
(Chromatic-to-Diatonic) symmetry, relating all sets between the two hemi-
spheres along and around the north–south axis. This is in essence a precise
corollary to the degree of symmetry exhibited between two core diatonically
and chromatically oriented M5-related collections of set classes (i.e. the
M-related set classes that share an ‘equal ics 2, 3, 4 and 6’ feature with their M
partner, labelled ‘a’, ‘b’, etc. in Table 9). A contrasting third set-class collection
is located across the whole of the intervening horizontal equatorial plane and
comprises those more ‘atonal’ singleton set classes, each of which displays the
same number of ics 1 and 5; this collection demonstrates no bias towards either
the Diatonic or the Chromatic (i.e. the M-invariant set classes in Table 9).135

Table 12 displays twelve ‘special’ set classes (six Z-related pairs) which are
cross-relational, exhibiting both the ‘sharing ics 2, 3, 4 and 6 with an M-related
partner’ property and the ‘equal ics 1 and 5’ property normally held only by M
invariants. Five additional set classes, 4–11 (0,1,3,5), 5–11 (0,2,3,4,7), 5–Z12
(0,1,3,5,6), 5–Z36 (0,1,2,4,7) and 6–8 (0,2,3,4,5,7) (and their complements),
are also cross-relational, in the sense that each acts as an intervallic interme-
diary between those Diatonic-versus-Chromatic pairs most similar to them
(and their complements). Table 13 shows how these five intermediaries have
midway or averaged ic 1 and ic 5 ratings compared to the ic 1 and ic 5 content
being swapped by the associated M-related pair, but at the same time have the
exact same ratings for ics 2, 3, 4 and 6 as the associated M-related pair. It will
hardly come as a surprise that this privileged group of seventeen cross-
relational set classes correlates in large part with those set classes already iden-
tified as being ‘neutral’. Together, they stand at some kind of central proto-
generic atonal-diatonic-chromatic interface. Once again, several of Quinn’s
desiderata have been confirmed by these wider issues, including those of dis-
tance and similarity (key criteria 1, 2 and 4), intrageneric and intergeneric
affinity (key criterion 5), the properties of interval content, subset structure and
transformational symmetry (key criterion 7) and the placement of prototypes
(key criterion 8).

This pitch-class set space odyssey has explored many of the highways and
byways of set-class theory since its starting point. We could say that Hanson was
pioneering a process by lighting the way towards a taxonomy of the set-class
universe. Others, most notably Quinn, have subsequently contributed to this
possibility by clarifying the direction that this path needs to take and by bringing
together concepts such as set-class and interval-class (similarity) relations and
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cyclic and multiplicative processes. In this scheme of things, I would like to think
that my contribution to the ongoing discourse, by delving into several new issues,
represents a step forward along the path to understanding set-class relationships.
A new methodology for the creation of a comprehensive array of BIG chains has
led to the proposition of a sixfold system of genera.The formation of a diatonic-
to-chromatic, M5-induced spectrum of symmetrically arranged set classes,
together with affinity scalings derived from genus-based interval-class character-
istics, have in turn led to the construction of a metaphorical representation of
that system of genera in three-dimensional space. I hope that these ideas might
stimulate further interest in this field and suggest that the four perspectives on
set-class affinity presented here, namely the BIG chains, the system of genera, the
interval-class scalings and the single-page three-dimensional representation of
the genera, could offer particularly fruitful starting points as analytical tools in
the future. Whatever direction this might take, I hope that my contribution will
result in further explorations into intergeneric set-class space.

Table 13 Five ‘intermediate’ set classes situated intervallically between Diatonic and
Chromatic M-related set classes (and vertically in Fig. 8)

Set class ic vector Set class ic vector Set class ic vector Set class ic vector

Chromatic
set class

4–2
(0,1,2,4)

[221100] 5–3
(0,1,2,4,5)

[322210] 5–4
(0,1,2,3,6)

[322111] 6–1
(0,1,2,3,4,5)

[543210]

Intermediate
set class

4–11
(0,1,3,5)

[121110] 5–11
(0,2,3,4,7)

[222220] 5–Z12
(0,1,3,5,6)
5–Z36
(0,1,2,4,7)

[222121] 6–8
(0,2,3,4,5,7)

[343230]

Diatonic
set class

4–22
(0,2,4,7)

[021120] 5–27
(0,1,3,5,8)

[122230] 5–29
(0,1,3,6,8)

[122131] 6–32
(0,2,4,5,7,9)

[143250]

Note: Incrementally changing ics 1 and 5 are shown vertically in bold.

Table 12 The twelve M-related (and Z-related) set classes sharing a complete
interval-class vector with their partner

Interval-class vector

4–Z15 (0,1,4,6) 4–Z29 (0,1,3,7) [111111]
5–Z17 (0,1,3,4,8) 5–Z37 (0,3,4,5,8) [212320]
5–Z18 (0,1,4,5,7) 5–Z38 (0,1,2,5,8) [212221]
6–Z6 (0,1,2,5,6,7) 6–Z38 (0,1,2,3,7,8) [421242]
6–Z19 (0,1,3,4,7,8) 6–Z44 (0,1,2,5,6,9) [313431]
6–Z11 (0,1,2,4,5,7) 6–Z40 (0,1,2,3,5,8) [333231]
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Species’, Journal of Music Theory, 32/ii (1988), pp. 187–270.
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Journal of MusicTheory, 30 (1986), pp. 95–111; and Richard S. Parks, The
Music of Claude Debussy (New Haven, CT: Yale University Press, 1989),
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3. Forte, ‘Pitch-Class Set Genera’, p. 218.
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article.

5. Parks, ‘Pitch-Class Set Genera: My Theory, Forte’s Theory’, p. 213.
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Forte, ‘Afterword’, Music Analysis, 17/ii (1998), p. 243.
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(1998), pp. 227–36.
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Claude Debussy; Forte, ‘Round Table’, p. 230; and Parks, ‘Pitch-Class Set
Genera: My Theory, Forte’s Theory’, p. 210.

8. Ian Quinn, ‘General Equal-Tempered Harmony (Introduction and Part
1)’, Perspectives of New Music, 44/ii (2006), p. 141; see also Quinn, ‘Lis-
tening to Similarity Relations’, Perspectives of New Music, 39/ii (2001), p.
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Atonal Works of Alban Berg’ (PhD diss., Open University, 1999), pp.
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10. Robert Morris, ‘A Similarity Index for Pitch-Class Sets’, Perspectives of
New Music, 18/i–ii (1979–80), pp. 445–60; Eric J. Isaacson, ‘Similarity of
Interval-Class Content between Pitch-Class Sets: the IcVSIM Relation’,
Journal of Music Theory, 34/i (1990), pp. 1–28; Michael Buchler, ‘Relative
Saturation of Interval and Set Classes: A New Model for Understanding
PcSet Complementation and Resemblance’, Journal of MusicTheory, 45/ii
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John Rahn, ‘Relating Sets’, Perspectives of New Music, 18/i–ii (1979–80),
pp. 483–98; and Marcus Castrén, ‘RECREL: a Similarity Measure for
Set-Classes’ (PhD diss., Sibelius Academy, 1994).

11. Quinn, ‘Listening to Similarity Relations’, pp. 141, 151 and 153; Quinn,
‘General Equal-Tempered Harmony (Introduction and Part 1)’, pp.
142–4; Thomas R. Demske, ‘Relating Sets: On Considering a Computa-
tional Model of Similarity Analysis’, Music Theory Online, 1/ii (1995); and
Art Samplaski, ‘Mapping the Geometries of Pitch-Class Set Similarity
Measures via Multidimensional Scaling’, Music Theory Online, 11/ii
(2005).

12. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
p. 135; and Samplaski, ‘Mapping the Geometries’, paras 8–18.

13. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
pp. 134–5; and Quinn, ‘Listening to Similarity Relations’, pp. 134–6.

14. Quinn, ‘Listening to Similarity Relations’, pp. 146–9 and 151–3; and
Samplaski, ‘Mapping the Geometries’, para. 19.

15. Joseph N. Straus, ‘Voice Leading in Set-Class Space’, Journal of Music
Theory, 49/i (2005), pp. 45–108; Dmitri Tymoczko, ‘The Geometry of
Musical Chords’, Science, 313/5783 (2006), pp. 72–4; and Clifton Cal-
lender, Ian Quinn and Dmitri Tymoczko, ‘Generalized Voice-Leading
Spaces’, Science, 320/5874 (2008), pp. 346–8.

16. Callender, Quinn and Tymoczko state that although ‘[m]usically, ... we
can use voice-leading size to measure distance between chord-types’
(‘Supporting Online Material for “Generalized Voice-Leading Spaces” ’,
p. 6), they nevertheless ‘abandon the idea that voice-leading size corre-
sponds to something like distance in the quotient space’ (p. 7); see also
their note S8 on p. 49.

17. This is an issue which Hoffman seeks to address in his study of the
relationship between voice leading and Fourier spaces; see Justin
Hoffman, ‘On Pitch-Class Set Cartography: Relations between Voice-
Leading Spaces and Fourier Spaces’, Journal of Music Theory, 52/ii
(2008), pp. 219–49.

18. Quinn points out the fundamental difference between intervallic/
inclusional similarity and voice-led similarity and seems to imply that a
commitment to one type of similarity necessarily ‘takes the place of’ the
other ‘completely different’ commitment; see Quinn, ‘General Equal-
Tempered Harmony (Introduction and Part 1)’, p. 119, and ‘General
Equal-Tempered Harmony: Parts 2 and 3’, Perspectives of New Music, 45/i
(2007), p. 61.
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19. Straus, ‘Voice Leading in Set-Class Space’, pp. 51–2, 56, 60 and 62–3;
and Quinn, ‘General Equal-Tempered Harmony: Parts 2 and 3’, Perspec-
tives of New Music, 45/i (2007), p. 47, ex. 43.

20. See n. 9 for the relevant references within my thesis; the term ‘bichro-
matic’ will be defined a little later.

21. These chains were originally called ‘generative sequence-related chains of
equivalence/similarity’ in table 6.3 of my thesis. Such IG chains are
implicit in Hanson’s interval-class projections and are made explicit in
Eriksson’s series of set types; see Eriksson, ‘The IC Max Point Structure’,
p. 97, ex. 2.

22. Eriksson, ‘The IC Max Point Structure’, pp. 95–6; and Quinn, ‘General
Equal-Tempered Harmony (Introduction and Part 1)’, p. 127.

23. This is in contrast to those more precise unitary and measured illustra-
tions of affinity, such as Quinn’s Fourier balances, which have been less
useful in comparing set classes of different cardinalities: see Quinn,
‘General Equal-Tempered Harmony: Parts 2 and 3’, pp. 47–8; and
Hoffman, ‘On Pitch-Class Set Cartography’, p. 226. The problem is
sidestepped here by taking an intersection-based approach to affinity.

24. Quinn returns repeatedly to these issues during the presentation of his
landmark article: Quinn, ‘General Equal-Tempered Harmony (Introduc-
tion and Part 1)’, pp. 116, 122, 124–6 and 134–6, and ‘General Equal-
Tempered Harmony: Parts 2 and 3’, pp. 19, 45 and 61.

25. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
pp. 115–21.

26. Howard Hanson, Harmonic Materials of Modern Music: Resources of the
Tempered Scale (New York: Appleton-Century-Crofts, 1960); Eriksson,
‘The IC Max Point Structure’; Forte, ‘Pitch-Class Set Genera’; Buchler,
‘Relative Saturation of Interval and Set Classes’; Ian Quinn, ‘A Unified
Theory of Chord Quality in Equal Temperaments’ (PhD diss., Eastman
School of Music, University of Rochester, 2004), p. 23; and Hoffman, ‘On
Pitch-Class Set Cartography’. Quinn has more recently rescinded his view
that the six interval classes have a direct association with the ‘six evident
qualitative genera’; Quinn, ‘General Equal-Tempered Harmony (Intro-
duction and Part 1)’, p. 121.

27. Eriksson, ‘The IC Max Point Structure’, pp. 97 and 99, exs 2 and 3.
Eriksson points out that the whole-tone scale, set class 6–35
(0,2,4,6,8,10), although central to Hanson’s ic 2 (0,2) projection and his
own region 2, also encompasses ics 4 and 6, and that the octatonic scale,
set class 8–28 (0,1,3,4,6,7,9,10), representative of Hanson’s ic 3 (0,3)
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projection and his own region 3, similarly incorporates ic 6. Quinn agrees
that the octatonic scale is just as much generated from ic 6 as it is from ic
3; see Quinn, ‘General Equal-Tempered Harmony: Parts 2 and 3’, p. 24.
Although ic 4 purportedly generates the hexatonic region or genus, it is
the most profligate of the interval classes, being the only interval class not
to score zero among all pentachords and hexachords; for this reason, it
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hexatonic, projection, it is also a quality shared by the whole-tone scale
(0,2,4,6,8,10) and therefore appears in two of Eriksson’s regions, 4 and 2.
Meanwhile, set class 4–9 (0,1,6,7), confined by Hanson to his ic 6 (0,6)
projection, is also found within the octatonic scale (0,1,3,4,6,7,9,10) and
therefore also appears in two of Eriksson’s regions, 6 and 3. Similarly, set
classes 3–8 (0,2,6) and 4–25 (0,2,6,8), both typical of Hanson’s ic 2 (0,2),
i.e. whole-tone, category, having high ics 2, 4 and 6 (although not actually
part of his ic 2 (0,2) projection), are also shared by collections representa-
tive of two other projections, set class 6–7 (0,1,2,6,7,8) from the ic 6 and
the octatonic scale (0,1,3,4,6,7,9,10) from the ic 3, and therefore appear
in three of Eriksson’s regions, 6, 2 and 3. Finally, set class 4–19 (0,1,4,8)
leans towards the whole-tone as well as the hexatonic and therefore
appears in Eriksson’s regions 2 and 4; see Eriksson, ‘The IC Max Point
Structure’, pp. 108–9.

28. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
p. 130, and ‘General Equal-Tempered Harmony: Parts 2 and 3’, pp.
11–12, 22 and 28–9.

29. Maximally even versus maximally compact situations inform Quinn’s
maximally even subgenera and F(12, 1) prototypicality measures, Straus’s
voice-leading spaces for each cardinality, Callender, Quinn and Tymocz-
ko’s generalised voice leading spaces and Hoffman’s displacement spaces;
see Quinn, ‘General Equal-Tempered Harmony: Parts 2 and 3’, pp. 5, 12,
26 and 46–7, and ‘General Equal-Tempered Harmony (Introduction and
Part 1)’, p. 121; Straus, ‘Voice Leading in Set-Class Space’, pp. 67–71;
Callender, Quinn and Tymoczko, ‘Generalized Voice-Leading Spaces’;
and Hoffman, ‘On Pitch-Class Set Cartography’, p. 221.

30. Quinn, ‘Listening to Similarity Relations’, pp. 132–3 and 154.

31. Eriksson, ‘The IC Max Point Structure’, pp. 96–7; Buchler, ‘Relative
Saturation of Interval and Set Classes’, pp. 271–3; and Hanson, Harmonic
Materials of Modern Music, p. 28. Hanson’s development of his six cat-
egories from these basic chains involves the incremental accumulation of
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one ‘foreign tone’ at a time into the projection, a fifth (or semitone) above
the starting point. See also Quinn, ‘General Equal-Tempered Harmony
(Introduction and Part 1)’, p. 128.

32. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
p. 131.

33. I have taken these category characteristics from ibid., p. 126.

34. Hanson, Harmonic Materials of Modern Music, as illustrated in Quinn,
‘General Equal-Tempered Harmony (Introduction and Part 1)’, p. 130,
ex. 2; Eriksson, ‘The IC Max Point Structure’, p. 96; and Buchler,
‘Relative Saturation of Interval and Set Classes’, pp. 271–3.

35. ‘Distinct’, ‘accessible’, ‘familiar’ and ‘instinctive’ are terms used by
Quinn, Michael Russ and others: see Quinn, ‘General Equal-Tempered
Harmony (Introduction and Part 1)’, pp. 123, 131 and 142; and Forte,
‘Round Table’, p. 235.

36. ‘Bichromatic’ also conveniently suggests opposite colours, as on a colour
wheel: this genus could equally be called ‘bidiatonic’, since set class 6–7
can alternatively be partitioned into two (transpositionally combined)
‘cycle of fifths’ segments a tritone apart, or three ic 5–spaced tritones, i.e.
(0,7,2)/(6,1,8) or (0,6)/(7,1)/(2/8). This genus was originally called ‘6-7’
in my thesis; see Gates, ‘The Codification of Pitch Organisation in Early
Atonal Berg’, table 6.4. A third partitioning of set class 6–7 would give
inversionally combined instances of set class 3–5, i.e. (0,1,6)/(2,7,8).
Although Samplaski does not consider this (or any other) hexachord as a
prototype, he does term this dimension ‘016-saturation’ or ‘pitch-classes
clumped at opposite sides of the chroma wheel’; see Samplaski, ‘Mapping
the Geometries’, para. 40.

37. Set class 6–30, the Petrushka chord, is one of Eriksson’s ‘maxpoints’. It also
‘contains’ multiple instances of the two all-interval tetrachords, 4–Z15
(0,1,4,6) and 4–Z29 (0,1,3,7), i.e. as (0,1,3,6,7,9) or (0,1,3,6,7,9) in the
case of 4–Z15, and as (0,1,3,6,7,9) or (0,1,3,6,7,9) in the case of 4–Z29.

38. The hexatonic prototype, 6–20, has the lowest ic 2 content of all hexa-
chords (uniquely zero) and the highest ic 4 content (six), the latter
equalled only by 6–35 (and it shares the lowest ic 6 content [zero] with
four other hexachords). Although Hanson’s set class 6–27 uniquely has
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prototype, 6–30, has the second-highest ic 3 content (four) but also the
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counts for ics 1, 3 and 5 (zero in each case). The diatonic prototype, 6–32,
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91–111.

41. Forte, ‘Pitch-Class Set Genera’, p. 201.

42. Each can nevertheless be expressed in four mathematical forms, com-
mensurate with octave transpositions within an ordered sequence of pitch
classes. By way of illustration, the OTIC (1,1) (11,11), as represented by
the ordered sequence C–C�–D or its retrograde, might be articulated
notationally as C4–C�4–D4 (up interval-1, up interval-1, i.e. 1 + 1 = 2,
mod. 12), as C4–C�4–D3 (up interval-1, down interval-11, i.e. 1 - 11 = 2,
mod. 12), as D4–C�5–C6 (up interval-11, up interval-11, i.e. 11 + 11 = 10,
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the inverse of 2, mod. 12) or as D4–C�5–C5 (up interval-11, down
interval-1, i.e. 11 - 1 = 10, the inverse of 2, mod. 12).

43. Combination cycles were first investigated by Lambert, who lists 132 (11
¥ 12) combination cycles, which he then reduces to 71 TnI combination
cycles; see J. Philip Lambert, ‘Interval Cycles as Compositional Resources
in the Music of Charles Ives’, Music Theory Spectrum, 12/i (1990), pp.
56–7. These 71 combination cycles can be further reduced to 60 by
eliminating those that involve zero in each of hisTnI rows; finally, these 60
TnI forms can be halved to my 30 by combining the pairs of numerals (or
singles that represent pairs of the same numeral) that sum the same way,
modulo 12, from each of (T1I/T11I), (T2I/T10I), (T3I/T9I), (T4I/T8/I),
(T5I/T7I) and (T6I), e.g. the pairs (1,1) (11,11) count as one cell, and as
one basic combination cycle, since they sum to 2 or 10, modulo 12.

44. All sums in Table 3 follow the patterns below:

�11/1 for cells generated from interval-1 combination cycles
�10/2 for cells generated from interval-2 combination cycles
�9/3 for cells generated from interval-3 combination cycles
�8/4 for cells generated from interval-4 combination cycles
�7/5 for cells generated from interval-5 combination cycles
�6 for cells generated from interval-6 combination cycles

For each column in Table 3, the total within each trichordal cell (e.g. 1 +
1 or 11 + 11, mod 12) equals the interval-class number of the combina-
tion cycle’s initiating cycle, or its mod 12 inversion (e.g. 2 or 10); con-
versely, for each column, the difference between either the first element of
each pair of intervals or the second element of each pair of intervals within
each trichordal cell (e.g. in the same case, 1 - 11 or 11 - 1, mod 12), also
equals the interval-class number of the combination cycle’s initiating
cycle, or its mod 12 inversion.

45. This was originally table 6.1 in my thesis, where it was also set out
notationally as ex. 6.2.

46. The M5 and M7 relationships between combination cycle cells in Bartók,
investigated by Gollin, and the I-chain mutual relationships within
motivic chains, also in Bartók, published more or less concurrently by
Straus, are both different to the cell relationships shown in Tables 3 and 4
but, remarkably, are essentially the same as each other: in both cases, cells
from different combination cycles are conjoined or correlated, e.g. in
Gollin’s ex. 6, the interval-1 combination cycle cell (6,7) (6,5) is linked to
the interval-5 combination cycle cell (6,1) (6,11), both of which form set
class 3–5 (0,1,6), while similarly, in Straus’s ex. 2c, the interval-1 com-
bination cycle cell (2,9) (3,10), spelled <+2, -3> or <-2, +3> in Straus’s
terminology, forming set class 3–2 (0,1,3), is linked to the interval-5
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combination cycle cell (2,3) (9,10), spelled <-3, -2>, forming set class
3–7 (0,2,5). There are 20 Gollin M cycles in all; ten of them correspond
to Straus’s ten i-chain pairs (reflecting 20 of the combination cycles) and
ten are self-replicating (the other ten combination cycles). See Edward
Gollin, ‘Multi-Aggregate Cycles and Multi-Aggregate Serial Techniques
in the Music of Béla Bartók’, Music Theory Spectrum, 29/ii (2007), p. 149;
and Joseph N. Straus, ‘Motivic Chains in Bartók’s Third String Quartet’,
Twentieth-Century Music, 5/i (2008), p. 28.

47. Eriksson’s ex. 2 is also set out in the form of IG chains; see Eriksson, ‘The
IC Max Point Structure’, p. 97.

48. In this and all subsequent respects, I am taking the pragmatic line that
seven-, eight-, nine- and ten-element set classes will display exactly the
same characteristics and interrelationships as their complements of car-
dinals 2–5. Consequently, these larger set classes will normally be implied
through their complementary association but omitted for reasons of space
and clarity.

49. There is an expansion of the bichromatic system to include 6–Z6
(0,1,2,5,6,7) and its Z-partner 6–Z38 (0,1,2,3,7,8), both of which are
supersets of 6–7’s principal subset, 5–7 (0,1,2,6,7); there is also an expan-
sion of the octatonic to include 6–Z13 (0,1,3,4,6,7), 6–Z23 (0,2,3,5,6,8),
6–Z49 (0,1,3,4,7,9) and 6–Z50 (0,1,4,6,7,9), all of which are subsets of
set class 7–31 (0,1,3,4,6,7,9) and therefore of 8–28 (0,1,3,4,6,7,9,10), the
octatonic scale; further, there is an expansion of the diatonic to include
6–8 (0,2,3,4,5,7) and 6–Z26 (0,1,3,5,7,8), the latter being a subset of
7–35 (0,1,3,5,6,8,10), the diatonic scale; finally, there is an expansion of
the chromatic to include 6–8 (0,2,3,4,5,7) and 6–Z4 (0,1,2,4,5,6), the
latter being a subset of 7–1 (0,1,2,3,4,5,6), the chromatic heptachord. It
can be noted here that set class 6–8 (0,2,3,4,5,7), the other all-
combinatorial hexachord that has sometimes been included as representa-
tive of a genus, e.g. by Eriksson in his overlapping diatonic/chromatic
region 7, is the superset both of 5–2 (0,1,2,3,5), itself a subset of the
chromatic prototype 6–1 (0,1,2,3,4,5), and of 5–23 (0,2,3,5,7), itself a
subset of the diatonic prototype 6–32 (0,2,4,5,7,9); this crossover area
between chromatic and diatonic will be investigated at length later.

50. Cohn makes reference to ‘minimal perturbations of a symmetrical divi-
sion of the octave’; see Richard Cohn, ‘Maximally Smooth Cycles, Hexa-
tonic Systems, and the Analysis of Late-Romantic Triadic Progressions’,
Music Analysis, 15/i (1996), p. 39, n. 40.

51. Hoffman considers the effect of intervallic displacements of varying sizes
in his study of Fourier spaces: see Hoffman, ‘On Pitch-Class Set Cartog-
raphy’, p. 231, table 1.
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52. These foundational pentachords are 5–21 (0,1,4,5,8) for the hexatonic,
5–7 (0,1,2,6,7) and 5–15 (0,1,2,6,8) for the bichromatic, 5–19
(0,1,3,6,7), 5–28 (0,2,3,6,8) and 5–31 (0,1,3,6,9) for the octatonic, 5–33
(0,2,4,6,8) for the whole-tone, 5–23 (0,2,3,5,7), 5–27 (0,1,3,5,8) and
5–35 (0,2,4,7,9) for the diatonic, and 5–1 (0,1,2,3,4), 5–2 (0,1,2,3,5) and
5–3 (0,1,2,4,5) for the chromatic. The hexachord families ofTable 6 were
first explained and set out in my thesis, p. 161 and p. 204, table 5.6 (where
it was erroneously labelled ‘table 2’).

53. Eriksson, ‘The IC Max Point Structure’, p. 107, ex. 11; and Tenkanen, ‘A
Linear Algebraic Approach’, p. 528, fig. 3.

54. Eriksson, ‘The IC Max Point Structure’, pp. 101–2, exs 4 and 6.

55. Buchler, ‘Relative Saturation of Interval and Set Classes’, p. 274, fig. 5.

56. Eriksson, ‘The IC Max Point Structure’, pp. 102–3, ex. 7; and Quinn,
‘Listening to Similarity Relations’, pp. 128, 131, 148 and 152, exs 9, 17
and 18.

57. This compounding of relationships would ultimately cause the rise of an
‘effectively inexhaustible sea’ such as is found in the systems of Alois Hába
and Howard Hanson, producing a ‘staggeringly complex’ network of
relationships requiring ‘one monstrous graph’; see Rahn, ‘Relating Sets’,
pp. 494 and 496–7; and JonathanW. Bernard, ‘Chord, Collection, and Set
in Twentieth-Century Theory’, in James M. Baker, David W. Beach and
Jonathan W. Bernard (eds), Music Theory in Concept and Practice (Roches-
ter, NY: University of Rochester Press, 1997), pp. 29 and 48–9.

58. Bonded pairs of set classes of the same cardinality within BIG chains have
the same kind of close kinship as that created through interval-class
displacement in the hexachord families of Table 6, and in the spaces
suggested in Hoffman, ‘On Pitch-Class Set Cartography’.

59. Tables A1–A6 represent somewhat modified and expanded versions of
table 6.3 in my thesis, pp. 207–12.

60. A few hybrid BIG chains, transgenerational in their progression from
smaller to larger sets, have had to be excluded from Tables A1–A6, given
the prevailing desire at this stage to formulate well-defined and distinctive
genera.

61. From this point in the article, the genera presented in Table 8 will be
referred to with an initial capital (e.g. Diatonic), while more general
references will retain the initial lower case. Complements of set classes
have been omitted from Table 8 for reasons of space but can be assumed
to be implicitly present alongside the quoted membership. Eriksson’s set
classes associated with each genus under interval-class vector counts are
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now confirmed in Table 8. The genera shown here were originally pre-
sented in slightly different form as table 6.4 in my thesis, pp. 213–4.

62. Samplaski’s comments and oppositional histograms confirm my findings.
He states that ‘[t]he notion of different kinds of pcsets at the extremes of
the dimensions invites comparison with various models of pcset families,
or genera’: Samplaski, ‘Mapping the Geometries’, para. 54. Some of his
histograms reveal strong generic associations, i.e. Bichromatic set classes
opposed to Octatonic ones in his fig. 8, Hexatonic set classes opposed to
Diatonic/Chromatic ones in his fig. 14, and Hexatonic and Bichromatic
set classes opposed to Octatonic ones in his fig. 15. Others have associa-
tions that are less strong, i.e.Whole-Tone set classes opposed to ones from
the Bichromatic and Octatonic in his fig. 13, Hexatonic set classes
opposed to Diatonic/Chromatic ones in his fig. 10, and Diatonic/
Chromatic set classes opposed to ones from the Bichromatic and Octa-
tonic in his fig. 16.

63. This deviancy may be explained by the fact that 5–Z12 (0,1,3,5,6)
[222121] has only half the number of distinct forms of its Z-partner,
5–Z36 (0,1,2,4,7) [222121], owing to its symmetry, a quality unique
among Z-designated set classes, and to the fact that it is not contained
within its complement, 7–Z12 (0,1,2,3,4,7,9) [444342], a lack of rela-
tionship which is also unique among complementary set classes.

64. 4–Z15 and 4–Z29 insinuate themselves into Eriksson’s whole-tone and
bichromatic regions as well, and in Quinn’s lists they also subsist in his
bichromatic area; see Eriksson, ‘The IC Max Point Structure’, p. 102; and
Quinn, ‘Listening to Similarity Relations’, p. 148.

65. In fact, the supersets of every Z-designated set class are the complements
of the subsets of its Z-partner, including the single tetrachord pair, 4–Z15/
4–Z29 (0,1,4,6)/(0,1,3,7) within an octatonic (8–28 (0,1,3,4,6,7,9,10))
aggregate, and the three pentachord pairs, 5–Z12/5–Z36 (0,1,3,5,6)/
(0,1,2,4,7), 5–Z17/5–Z37 (0,1,3,4,8)/(0,3,4,5,8) and 5–Z18/5–Z38
(0,1,4,5,7)/(0,1,2,5,8) within ten-element aggregates. It can be asserted
here that the various types of complementation displayed by the BIG
chains in Tables A1–A6 emphatically demonstrate complementation as a
valid form of equivalence, rather than instinctively assuming it, as does
Forte in his rule 1 for genus formation; see Forte, ‘Pitch-Class Set
Genera’, p. 192.

66. This equivalence will be discussed at length later.

67. Two BIG chains terminating with set class 6–14 are found in Tables A1
(hexatonic), A5 (diatonic) and A6 (chromatic); three BIG chains incor-
porating set classes 6–5 and 6–18 and two terminating with set class

A PITCH-CLASS SET SPACE ODYSSEY 133

Music Analysis, 32/i (2013) © 2013 The Author.
Music Analysis © 2013 Blackwell Publishing Ltd



6–Z43 are found in Tables A2 (bichromatic) and A3 (octatonic); and a
single BIG chain terminating with set class 6–9 is found in Tables A5
(diatonic) and A6 (chromatic).

68. Eriksson, ‘The IC Max Point Structure’, pp. 102–3, ex. 7.

69. That is, the Bichromatic with Forte’s genera 1/2, the Octatonic with his
genus 3, the Chromatic with his genera 5/6, the Hexatonic with his genera
8/9/10 and the Diatonic with his genera 11/12; meanwhile, Forte’s genus
4 has elements in common with both my Hexatonic and Whole-Tone
genera.

70. The higher incidence of dyads and trichords within a genus correlates
largely with their level of subset-of-hexachord-prototype status within that
genus.

71. Quinn discusses ‘characteristic’ set classes that intuitively fill a harmonic
space in ‘General Equal-Tempered Harmony: Parts 2 and 3’, p. 51.

72. Parks, ‘Pitch-Class Set Genera: My Theory, Forte’s Theory’, pp. 207 and
209; and Forte, ‘Pitch-Class Set Genera’, pp. 192 and 234–5.

73. This range of membership is not so unexpected when we consider that the
interval-class factor which binds the Hexatonic, Diatonic and Chromatic
prototypes is zero ic 6, and that this is the only distinctive feature in set
class 5–11’s (0,2,3,4,7) interval-class vector [222220].

74. Allen Forte, The Structure of Atonal Music (New Haven, CT: Yale Univer-
sity Press, 1973), pp. 167–9.

75. Eric J. Isaacson, ‘Issues in the Study of Similarity in Atonal Music’, Music
Theory Online, 2/vii (1996), para. 22.

76. Ibid., para. 27.

77. Forte, ‘The Structure of Atonal Music’, p. 127.

78. The close connection between 6–Z6 (0,1,2,5,6,7) and 6–Z38
(0,1,2,3,7,8) in the first segment reflects a unique state of affairs, since
these set classes represent the only case of Z-paired hexachords being
fashioned from combination interval cycles (all other Z-hexachords incor-
porated into Table 5 are lacking their Z-partners). Reference to Table 5
reveals that the cycle of semitones a tritone apart (interval-1 (5,6) (6,7))
and the cycle of fourths a tritone apart (interval-5 (1,6) (6,11)) both
generate set classes 3–5 (0,1,6), 4–8 (0,1,5,6), 4–9 (0,1,6,7) and 5–7
(0,1,2,6,7) as contiguous events; only at cardinal 6 do they diverge, with
set classes 6–7 (0,1,2,6,7,8) and 6–Z6 (0,1,2,5,6,7) in the former, and
6–7 (0,1,2,6,7,8) and 6–Z38 (0,1,2,3,7,8) in the latter. We could say that
the instances of 6–Z6 (A�, A, B�, C�, D, E�) and 6–Z38 (A�, A, C�, D, E�, E)
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show a minimal perturbation from their notional progenitor 6–7 (G, A�, A,
C�, D, E�), requiring the transposition or displacement of just one element
(G) by a minor third in each case. Interestingly, 6–Z6 and 6–Z38 are the
only hexachords other than all-combinatorial ones to have a low occur-
rence of membership in Forte’s system of genera, appearing in only two
genera: this is clearly a consequence of their close •(R2, RP) relational
similarity to 6–7, which also only occurs in the same two genera: see
Forte, The Structure of Atonal Music, p. 185.

79. Cohn, ‘Maximally Smooth Cycles’, pp. 33–4.

80. Forte, ‘Afterword’, p. 242.

81. This seems to me to be easier than contracting six (genus) dimensions
into three.

82. The M5 transform allows all Z hexachords to be correlated transforma-
tionally, some interchangeably in groups of four and some in pairs, in
alternating Z-paired and M5-paired cyclic patterns:

(1) 6–Z3 (0,1,2,3,5,6) Z-relates to 6–Z36 (0,1,2,3,4,7), which M-relates
to 6–Z47 (0,1,2,4,7,9), which Z-relates to 6–Z25 (0,1,3,5,6,8), which
M-relates back to 6–Z3 (alternating Chromatic and Diatonic set
classes);

(2) 6–Z4 (0,1,2,4,5,6) Z-relates to 6–Z37 (0,1,2,3,4,8), which M-relates
to 6–Z48 (0,1,2,5,7,9), which Z-relates to 6–Z26 (0,1,3,5,7,8), which
M-relates back to 6–Z4 (alternating Chromatic and Diatonic set
classes);

(3) 6–Z10 (0,1,3,4,5,7) Z-relates to 6–Z39 (0,2,3,4,5,8), which
M-relates to 6–Z24 (0,1,3,4,6,8), which Z-relates to 6–Z46
(0,1,2,4,6,9), which M-relates back to 6–Z10 (alternating Chromatic
and Diatonic set classes);

(4) 6–Z13 (0,1,3,4,6,7) Z-relates to 6–Z42 (0,1,2,3,6,9), which M-
relates to 6–Z29 (0,1,3,6,8,9), which Z-relates to 6–Z50 (0,1,4,6,
7,9), which M-relates back to 6–Z13 (Octatonic set classes);

(5) 6–Z23 (0,2,3,5,6,8) Z-relates to 6–Z45 (0,2,3,4,6,9), which M-
relates to 6–Z45, which Z-relates to 6–Z23, which M-relates back to
6–Z23 (Octatonic set classes);

(6) 6–Z28 (0,1,3,5,6,9) Z-relates to 6–Z49 (0,1,3,4,7,9), which M-
relates to 6–Z49, which Z-relates to 6–Z28, which M-relates back to
6–Z28 (Octatonic set classes);

(7) 6–Z19 (0,1,3,4,7,8) Z-relates and M-relates to 6–Z44 (0,1,2,5,6,9),
which Z-relates and M-relates back to 6–Z19 (Hexatonic set classes);

(8) 6–Z6 (0,1,2,5,6,7) Z-relates and M-relates to 6–Z38 (0,1,2,3,7,8),
which Z-relates and M-relates back to 6–Z6 (Bichromatic set classes);
and
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(9) 6–Z11 (0,1,2,4,5,7) Z-relates and M-relates to 6–Z40 (0,1,2,3,5,8),
which Z-relates and M-relates back to 6–Z11 (Chromatic and Dia-
tonic set classes).

83. Transpositional cycles become altered when an additional operation such
as TnI is imposed on the M operation or on the individual set classes. We
can see this occurring between instances of another Z/M-related pair,
4–Z15 (0,1,4,6) and 4–Z29 (0,1,3,7), towards the end of the fourth of
Berg’s Four Songs for voice and piano, Op. 2 (‘Warm die Lüfte’), in bars
20–22. This coda progression can be portrayed as an augmented-ninth to
dominant-thirteenth cycle, incorporating linear fourths in the bass and
descending semitones in the upper three parts, and is based closely on a
whole-tone progression which has already appeared (in the key of E�
minor) at the start and close of the second Op. 2 song, and on chords used
previously during bars 5–10 of the first song. The progression from the
second song implies M7,T11/T5 ic 1/ic 5-cycle transforms between whole-
tone chords. That from the fourth song involves a series of TnI, M7,
T11/T5 ic 1/ic 5-cycle transforms between 4–Z29s (0,1,3,7) and 4–Z15s
(0,1,4,6), incorporating transpositions at T10 (T11 + T11 or T5 + T5)
between instances of each set. The M7,T11/T5 aspect of both sequences
allows them to be viewed two ways, either as three parallel upper voices
falling in semitones against a bass rising in fourths (as written by Berg), or
as three parallel lower voices rising in fourths against a treble falling in
semitones.

84. These ten correlations correspond to Gollin’s ten non-replicating M
cycles and Straus’s ten i-chain pairs: see n. 46.

85. Additionally, in Table 8 the set classes labelled as subsets of the genus-
defining set (in bold), as exclusive to the genus (*) or as gregarious (+) are
similarly matched M-relationally within Hexatonic, Bichromatic, Whole-
Tone and Octatonic lists, and are either opposed one-to-one or correlated
in the Diatonic and Chromatic. Quinn has noted the M5/M7 correlations
between chromatic and diatonic set classes in Hanson’s projections,
Eriksson’s maxpoints and regions and Buchler’s interval-saturated sets:
see Quinn, ‘General Equal-Tempered Harmony (Introduction and Part
1)’, p. 138. The M relation also informs the symmetries in Eriksson’s ex.
11 and Hoffman’s figs 6 and 8, while the latter’s figs 7a and 7c are M
transforms of each other: see Eriksson, ‘The IC Max Point Structure’, p.
107; and Hoffman, ‘On Pitch-Class Set Cartography’, pp. 230, 232, 234
and 236.

86. Forte, ‘Pitch-Class Set Genera’, pp. 200, 204 and 218.

87. Ibid., p. 215. His table 17 shows the distribution of four-, five- and
six-element subsets of the diatonic collection, set class 7–35
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(0,1,3,5,6,8,10), in relation to his genera, while his table 19 shows the
chromatic collection, set class 7–1 (0,1,2,3,4,5,6), in the same way (pp.
212 and 216). Inevitably, both lists contain the same number of set
classes, and each is a complete and exact match onto the other via the
M5 transform. Some matched set classes are shared between the same
genera (i.e. genera 1, 2, 3 and 7), while others are paired across corre-
lated but dichotomous chromatic-versus-diatonic genera (i.e. genus 5
versus genus 11, genus 6 versus genus 12 and genus 8 versus genus 10).
In particular, his genera 6 (‘semichroma’) and 12 (‘dia-tonal’) are
M5-matched to each other. Forte might perhaps have named them rela-
tionally had he realised the correlation. Likewise, genus 8 might better
have been called ‘atonal-chroma’ rather than simply ‘atonal’, thus cor-
responding to the ‘atonal-tonal’ of the associated, partially M5-related
genus 10 (Forte’s genera 5 and 11 have already aptly been called
‘chroma’ and ‘dia’). Indeed, Forte was close to realising these similarities
when he produced identical difference quotients for his Supragenus II
(chromatic)/Supragenus III (atonal) versus Supragenus III (atonal)/
Supragenus IV (diatonic), and also for his Supragenus I (atonal hybrid)/
Supragenus II (chromatic) versus Supragenus I (atonal hybrid)/
Supragenus IV (diatonic); see Forte, ‘Pitch-Class Set Genera’, p. 228,
table 25. In his interpretation of these ‘somewhat unexpected’ difference
quotient results, Forte makes the assumption that Supragenera II and IV
(the chromatic and diatonic) both contribute (equally) to the structure
of Supragenera I and III (the atonal hybrid and atonal): ibid., p. 227.
Although he notes the regularity in the counts of sets of the same car-
dinality between supragenera, he does not mention that the cycle of
fourths/fifths M5 transform might be implicated. He concludes this
section of text by stating that ‘[f]urther study of the structure of the
system of 12 pitch-class genera may reveal the significance of these
evidently special circumstances’: ibid., pp. 227–9.

88. His chosen trichordal progenitors confirm this. Outside the spectrum are
genera formed from the single ‘atonal’ trichords: 3–5 (0,1,6) and 3–8
(0,2,6) initiate genera 1 and 2, which have a set-class structure akin to my
Bichromatic; 3–10 (0,3,6) initiates genus 3, which is akin to my Octatonic;
and 3–12 (0,4,8) initiates genus 4, which relates to my Hexatonic. More
significant, within the spectrum are genera formed from pairs of diatonic
and chromatic trichords, which can be arranged in a symmetrical pro-
gression. Unsurprisingly, this progression transpires to be largely
(pro)created by the chromatic-to-diatonic M5-transform pairs, 3–1/3–9
(0,1,2)/(0,2,7), 3–2/3–7 (0,1,3)/(0,2,5) and 3–3/3–11 (0,1,4)/(0,3,7).
Forte makes brief mention of this; ibid., p. 267, n. 5.

89. According to Clampitt, the composer and theorist AnatolVieru ‘views the
diatonic-chromatic duality as a fundamental aspect of the 12-pc universe’;
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see David Clampitt, ‘Report: an International Symposium on Music and
Mathematics (Bucharest, Romania)’, Music Theory Online, 1/i (1995),
para. 3. Quinn has debated whether the diatonic and chromatic genera are
‘categorically opposite to one another’ to the extent that they ‘constrain
one another’ but ultimately opts for a ‘constrained independence’ between
them, which does not necessarily have to be musically opposed: see
Quinn, ‘General Equal-Tempered Harmony: Parts 2 and 3’, pp. 53 and
55; emphasis in original. He nevertheless points out various intergeneric
aspects of this symmetry: ‘The degree to which a species [set class] ...
exemplifies one genus [diatonic or chromatic] is the same as the degree to
which its M5-transform exemplifies the other genus [chromatic or dia-
tonic]’, and ‘whatever an inclusional similarity relation says about species
[set classes] s and t will be the same as what it says about M5s and M5t’;
see Quinn, ‘General Equal-Tempered Harmony (Introduction and Part
1)’, pp. 138, 143 and 146. This feature is amply exemplified in the BIG
chains of Tables A1–A6.

90. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
p. 146; emphasis in original.

91. Quinn has pointed out that the all-combinatorial set class 6–8
(0,2,3,4,5,7) has characteristics of both the diatonic and chromatic; Eriks-
son has included this set class in his diatonic-with-chromatic region 7,
along with the diatonic and chromatic set classes 6–9 (0,1,2,3,5,7), 6–Z11
(0,1,2,4,5,7), 6–Z40 (0,1,2,3,5,8), 5–11 (0,2,3,4,7), 4–11 (0,1,3,5) and
4–10 (0,2,3,5). See Quinn, ‘General Equal-Tempered Harmony: Parts 2
and 3’, p. 55; and Eriksson, ‘The IC Max Point Structure’, pp. 102–3, ex.
7. These seven set classes are distributed into both genera in my Table 8.

92. This overarching diatonic-to-chromatic spectrum contrasts neatly with
Forte’s diatonic-to-exotic spectrum.

93. Samplaski has only incorporated set classes of cardinals 3, 4 and 5 in these
histograms; Samplaski, ‘Mapping the Geometries’, paras 36 and 43, and
figs 7 and 11. His fig. 7, labelled ‘ANGLE’, represents an interval-class
saturation arrangement derived from Isaacson, ‘Similarity of Interval-
Class Content’, while his fig. 11, labelled ‘RECREL’, embodies a subset-
embedding array drawn from Castrén, ‘RECREL: a Similarity Measure’.
Both are computationally induced.

94. ‘All of the set-classes in the [central near-zero] clump have equal ic1 and
ic5 content; the first few set-classes with significantly non-zero coordi-
nates [to either side of the central clump] have ic1 content one more than
ic5 content or vice versa; and the set-classes at the extremes have either
zero ic5 or ic1 content while the value of the opposite is at least two ... .
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This dimension thus provides a graphic ... example of ... what the terms
“diatonic” and “chromatic” really signify’. Samplaski, ‘Mapping the
Geometries’, para. 39.

95. It is worth noting that the characteristic set classes for some of my genera
are also clustered to some extent in Samplaski’s scalings, with the Bichro-
matic set classes somewhat closer to the chromatic nexus and the Hexa-
tonic ones somewhat closer to the diatonic.

96. His fig. 9, however, is based on ANGLE coordinates for a whole-tone–
versus–anti-whole-tone dimension, although the resultant spread runs
from M-invariant whole-tone set classes at one extreme to octatonic
and/or bichromatic M invariants at the other, with the neutral 4–Z29 at its
centre; his fig. 8 is based on ANGLE coordinates for set class 3–5 (0,1,6),
i.e. bichromatic, versus interval class 3, i.e. nominally octatonic, but more
appositely anti-bichromatic, which displays a spread useful for the Bichro-
matic genus, again with set class 4–Z29 at its centre.

97. I have decided at this point to drop the low ic 6 attribute as unnecessary
to the process, since it is typical of both Diatonic and Chromatic genera.

98. In the case of Octatonic scalings, where a different number of interval-
class ratings is being compared, cardinalities below 6 have needed to be
promoted in the rankings, pentachords by one, tetrachords by two, etc., in
order to create a proper spread across the cardinalities.

99. Specifically, with the Diatonic and Chromatic spectrum, since the differ-
ence between ics 1 and 5,as shown by the number of pluses for all set classes
of cardinals 2–6 in Table 9, ranges from four to minus four, it would be
convenient to say that there are nine distinct levels that are reduced to seven
by conflating the top two and bottom two levels.The most typical set classes
could then be labelled ‘1’ (i.e. those with a positive 1/5 difference scoring of
4 or 3), the next level could be labelled ‘2’ for a difference scoring of 2, and
so on down to ‘7’ for a negative scoring of 4 or 3 (i.e. the least typical set
classes). It is worth reiterating here that the chromatic range is different in
kind to Quinn’s chromatic array since it does not follow a maximally
chromatic to maximally even dimension; see Quinn, ‘General Equal-
Tempered Harmony (Introduction and Part 1)’, p. 47, ex. 43. Further, the
uppermost five of the Hexatonic’s ten affinity levels have been reduced to
two and level six has been omitted in order to present the neutral set classes
centrally as level ‘4’; the Bichromatic’s fifteen levels have been grouped in
twos or threes; the Whole-Tone’s ten levels have likewise been reduced to
seven by conflating the uppermost five to two; and finally, the Octatonic’s
fourteen levels have been reduced to seven by conjoining the top twelve
levels, grouping them in threes or twos.

100. If we look at Samplaski’s seven other histograms, which show a variety of
coordinated parameters measuring similarity/dissimilarity relations other
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than the diatonic-versus-chromatic discussed earlier, we find that all
24 M-related set classes of cardinals 3–5 once again pervade the struc-
tures, although now forming adjacent pairs within the distributions (the
few exceptions being almost adjacently paired).This remarkable phenom-
enon presumably occurs because, whenever oppositions other than
diatonic-versus-chromatic are under consideration, the M-related sets
inevitably demand to sit snugly together as a pair through the twinning of
their ic 2, 3, 4 and 6 content. This situation seems to correlate with the
consistent placement of these pairs together as symmetrical oppositions in
the Diatonic and Chromatic genera but as related pairs in the other four
genera, as can be seen in Table 8.

101. Unlike his chromatic range (see n. 99), Quinn’s (incomplete) hexatonic
and whole-tone ranges do concur with those in Table 10; see Quinn,
‘General Equal-Tempered Harmony (Introduction and Part 1)’, p. 48,
ex. 44.

102. Some examples are 6–Z12/6–Z41 [332232], 6–Z17/6–Z43 [322332],
6–Z11/6–Z40 [333231], 6–8 [343230], 5–11 [222220], 5–Z12/5–Z36
[222121], 5–15 [220222], 5–Z18/5–Z38 [212221], 5–19 [212122], 5–28
[122212], 4–5 [210111], 4–16 [110121], 4–11 [121110], 4–13 [112011]
and 4–Z15/4–Z29 [111111].

103. Tenkanen, ‘A Linear Algebraic Approach’, p. 527.

104. These three areas are, firstly, a block at one extreme containing his region
6 (high ic 6 content, corresponding to my Bichromatic); secondly, a block
at the other extreme containing his regions 3 (high ic 3 and 6 content,
corresponding my Octatonic) and 2 (high ic 2, 4 and 6 content, corre-
sponding to my Whole-Tone); and thirdly, a centrally situated block
containing his regions 1 (high ic 1 content, corresponding to my Chro-
matic), 5 (high ic 5 content, corresponding to my Diatonic), 4 (high ic 4
content, corresponding to my Hexatonic) and 7 (high ic 2 content, an M5

self-mapping overlap between his regions 1 and 5); see Eriksson, ‘The IC
Max Point Structure’, p. 105, ex. 9.

105. This merges a chromatic/diatonic area (the M5-paired pentachords 5–1/
5–35 (0,1,2,3,4)/(0,2,4,7,9), 5–2/5–23 (0,1,2,3,5)/(0,2,3,5,7) and 5–3/
5–27 (0,1,2,4,5)/(0,1,3,5,8)) with a whole-tone area (the singleton set class
5–33 (0,2,4,6,8)) via a chromatic/diatonic/whole-tone mix (the M5-paired
5–9/5–24 (0,1,2,4,6)/(0,1,3,5,7)); see Quinn, ‘General Equal-Tempered
Harmony (Introduction and Part 1)’, p. 147, ex. 11.These set classes also
conform appropriately to my genera, with 5–9/5–24 in all three.

106. This comprises set classes 4–1 (0,1,2,3), 4–2 (0,1,2,4), 4–11 (0,1,3,5),
5–24 (0,1,3,5,7), 5–23 (0,2,3,5,7), 7–27 (0,1,2,4,5,7,9) and 7–35
(0,1,3,5,6,8,10); see Quinn, ‘General Equal-Tempered Harmony: Parts 2
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and 3’, p. 50, ex. 44. This graph has perpendicular axes representing
the ‘non-chromatic to most-chromatic’ and the ‘non-diatonic to most-
diatonic’ aspects of the transition and a central M-invariant diagonal
axis representing a ‘non-chromatic-or-diatonic to most-chromatic-and-
diatonic’ aspect. Again, the central set classes in the sequence, 4–11 and
5–24, are both diatonic and chromatic.

107. This progression runs from 6–20 (0,1,4,5,8,9), which has six instances of
ic 4 within its ic vector, via 6–Z19 (0,1,3,4,7,8), 6–Z44 (0,1,2,5,6,9),
6–14 (0,1,3,4,5,8), 6–15 (0,1,2,4,5,8), 6–31 (0,1,3,5,8,9), 6–16 (0,1,4,
5,6,8), 6–21 (0,2,3,4,6,8), 6–34 (0,1,3,5,7,9) and 6–22 (0,1,2,4,6,8), all
with four instances of ic 4, and terminating at 6–35 (0,2,4,6,8,10), which
again has six instances of ic 4; see Quinn, ‘General Equal-Tempered
Harmony: Parts 2 and 3’, p. 54, ex. 48. Note that the hexachords in this
third model replicate those presented in my Hexatonic and Whole-Tone
families, Table 6.

108. Callender, Quinn and Tymoczko, ‘Generalized Voice-Leading Spaces’,
fig. S10 and fig. S5, A–H; and Straus, ‘Voice Leading in Set-Class Space’.

109. Richard Cohn, ‘A Tetrahedral Graph of Tetrachordal Voice-Leading
Space’, Music Theory Online, 9/iv (2003), fig. 10; and Callender, Quinn
and Tymoczko, ‘Generalized Voice-Leading Spaces’, fig. S5, L–M.

110. Atte Tenkanen, ‘Measuring Tonal Articulations in Compositions’, paper
given at the MaMuX Computational Analysis Special Session, at
IRCAM, Paris, April 2008, p. 7, http://recherche.ircam.fr/equipes/
repmus/mamux/Tenkanen.pdf.

111. Cohn, ‘A Tetrahedral Graph’, p. 9.

112. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
p. 146.

113. Ibid., p. 146–7; emphasis in original. In fact, all M-invariant set classes are
captured by my four non-Diatonic/Chromatic genera.

114. Cohn, ‘Maximally Smooth Cycles’, pp. 31 and 34.

115. In other words, all six genus prototypes would be situated ‘at the “edges”
of the distribution’; see Quinn, ‘General Equal-Tempered Harmony
(Introduction and Part 1)’, p. 135.

116. An octahedron or square dipyramid could be used as an alternative to the
sphere. It is worth noting here that the smaller (TINV) progenitors of the
four ‘equatorial’ genera, 3–12 (0,4,8), 4–9 (0,1,6,7), 4–25 (0,2,6,8) and
4–28 (0,3,6,9), have no place in the Diatonic and Chromatic genera and
therefore contribute to the definition of an essentially different,
M-invariant, axis of generation.
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117. This arrangement is similar to Eriksson’s regional layout, discussed
earlier, in that a bichromatic/hexatonic axis embraces a diatonic/
chromatic one; see Eriksson, ‘The IC Max Point Structure’, p. 105, ex. 9.
Quinn has a similar axial arrangement of diatonic/octatonic/chromatic
against bichromatic/octatonic/hexatonic, with whole-tone as an isolate;
see Quinn, ‘Listening to Similarity Relations’, p. 130, ex. 8.

118. Since the Whole-Tone region appears to be somewhat separate from the
Hexatonic, Bichromatic and Octatonic, an alternative three-dimensional
shape would have theWhole-Tone somewhat offset from, or even opposed
to, the other three equatorial nodes. It could also be argued that the
Bichromatic, Diatonic and Chromatic nodes should be a little more
closely aligned, since these are the only three to be properly related to the
full twelve-note aggregate (see the generational process of each in
Table 5). If set class 6–27 (0,1,3,4,6,9) rather than set class 6–30
(0,1,3,6,7,9) had been chosen as the Octatonic progenitor, then this
region would have leaned less towards the Bichromatic and slightly more
towards the other three.

119. The choice of just three axes, rather than one per genus, is a practical one,
although not without its own inherent problems, based on the desire to
create a visually comprehensible representation in just three dimensions.
For practical reasons, the diagram has had to be drawn in distorted form
with the Hexatonic node apparently somewhat closer to the Whole-Tone
than to the Octatonic and somewhat closer to the Diatonic than to the
Chromatic, and the Bichromatic node apparently somewhat closer to the
Octatonic than to theWhole-Tone and somewhat closer to the Chromatic
than to the Diatonic. I am visually assuming the Hexatonic to be the
closer node and the Bichromatic the farther away, although of course the
viewer can equally imagine the whole diagram the other way round.

120. These are Diatonic to Hexatonic, Hexatonic to Chromatic, Chromatic to
Bichromatic, Bichromatic to Diatonic, Diatonic to Whole-Tone, Whole-
Tone to Chromatic, Chromatic to Octatonic, Octatonic to Diatonic,
Whole-Tone to Hexatonic, Hexatonic to Octatonic, Octatonic to Bichro-
matic and Bichromatic to Whole-Tone.

121. The Diatonic/Chromatic, Whole-Tone/Octatonic and Hexatonic/
Bichromatic coordinates occupy the same point, in the centre of the
globe; the last is not shown in Fig. 6, as it happens to represent an empty
two-genus node.

122. The only nodal points missing on the horizontal planes shown in Figs 7a,
b and c are the Diatonic and Chromatic S/N extremes.

123. Quinn, ‘General Equal-Tempered Harmony: Parts 2 and 3’, pp. 30 and 50.

124. Ibid., p. 54, ex. 48.
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125. It needs to be understood, however, that the two remaining two-genus
interfaces at this central point bypass each other without having the
apparent closeness suggested by the diagram, and that the six-genus
interface (set class 2–4) necessarily has to placed adjacent to them as well.

126. This total of 6 plus 57 would be a round 64 if we were to include the
zero-rated category outside the global set-class space.

127. Quinn, ‘General Equal-Tempered Harmony (Introduction and Part 1)’,
p. 135.

128. By implication, their complements would occupy these same positions,
but they have been omitted for reasons of space and clarity.

129. Quinn, ‘General Equal-Tempered Harmony: Parts 2 and 3’, p. 30.

130. This same arrangement applies within the central near-zero ‘clump’ in
Samplaski’s figs 7 and 11.

131. Quinn’s three two-dimensional axes (nn. 105, 106 and 107) can clearly be
seen projected within Fig. 8. Firstly, his triangular diatonic/chromatic/
whole-tone group, set classes 5–1/5–35 (0,1,2,3,4)/(0,2,4,7,9), 5–2/5–23
(0,1,2,3,5)/(0,2,3,5,7), 5–3/5–27 (0,1,2,4,5)/(0,1,3,5,8) and 5–33 (0,2,
4,6,8) is duly projected as an arc on the left-hand (Whole-Tone) side of
centre. Secondly, his chromatic-to-diatonic Cartesian plane sequence, set
classes 4–1 (0,1,2,3), 4–2 (0,1,2,4), 4–11 (0,1,3,5), 5–24 (0,1,3,5,7),
5–23 (0,2,3,5,7), 7–27 (0,1,2,4,5,7,9) and 7–35 (0,1,3,5,6,8,10), follows
as a north-to-south continuum, deviating somewhat towards the Whole-
Tone during its course. Thirdly, his hexatonic-to-whole-tone progression
of hexachords, set classes 6–20 (0,1,4,5,8,9), 6–Z19 (0,1,3,4,7,8), 6–Z44
(0,1,2,5,6,9), 6–14 (0,1,3,4,5,8), 6–15 (0,1,2,4,5,8), 6–31 (0,1,3,5,8,9),
6–16 (0,1,4,5,6,8), 6–21 (0,2,3,4,6,8), 6–34 (0,1,3,5,7,9), 6–22 (0,1,2,
4,6,8) and 6–35 (0,2,4,6,8,10), appears as a diverging and somewhat
roundabout trip ‘eastwards’ from the Hexatonic node to the Whole-Tone
node.

132. Tenkanen, ‘A Linear Algebraic Approach’, pp. 525–7; Samplaski,
‘Mapping the Geometries’, paras 66–7; and Forte, ‘Pitch-Class Set
Genera’, p. 196.

133. Tenkanen, ‘A Linear Algebraic Approach’, p. 525; and Forte, ‘Pitch-Class
Set Genera’, p. 192. Quinn keeps the whole-tone category unconnected to
the other five in his illustration of tetrachord set classes under ASIM; see
Quinn, ‘Listening to Similarity Relations’, p. 128, ex. 7, and p. 130, ex. 8.

134. Forte, ‘Pitch-Class Set Genera’, p. 196, states that it is ‘exceedingly
difficult to find any musical instantiation whatsoever’ for such sets.

135. The ‘no bias’ collection does, however, include some sets with an equally
weighted membership of both the Diatonic and the Chromatic genera.
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Appendix: BIG Chains

Table A1 Hexatonic BIG chains

   Hanson/Eriksson IG chain:2–4 3–12 4–19 5–21 6–20 7–21 8–19 9–12 10–4 (S)

4–7 5–3 6–14 7–3 8–7(S) 4–19 5–13 6–15 7–13 8–19(S)
5–21 6–15 7–21 5–21 6–16 7–21

M M
4–20 5–27 6–14 7–27 8–20(S) 4–19 5–30 6–16 7–30 8–19(S)

5–21 6–31 7–21 5–21 6–31 7–21

4–7 5–6 6–16 7–20 8–20 3–12 4–24 5–13 6–15 7–13 8–24 9–12
5–21 6–Z44 7–21 R/ 4–19 5–26 7–26 8–19

M M
4–20 5–20 6–16 7–6 8–7 3–12 4–24 5–26 6–31 7–26 8–24 9–12

5–21 6–Z19 7–21 4–19 5–30 7–30 8–19

4–7 5–Z18 6–31 7–32 8–17 3–12 4–24 5–13 6–16 7–13 8–24 9–12 (M)
5–21 6–Z19 7–21 4–19 5–30 7–30 8–19

M
4–20 5–Z38 6–15 7–16 8–17

5–21 6–Z44 7–21 4–19 5–26 6–15 7–26 8–19 (S/M)
             R 5–21 6–31 7–21

4–17 5–32 6–31 7–Z18 8–7
5–21 6–Z44 7–21 4–17 5–11 6–14 7–11 8–17 (S/M)

M 5–21 6–16 7–21
4–17 5–16 6–15 7–Z38 8–20

5–21 6–Z19 7–21

2–1 3–1 4–4 5–6 6–Z44 7–20 8–14 9–4 10–5
3–4 4–5 5–Z38 7–Z18 8–16 9–9 R/

M
2–5 3–4 4–14 5–20 6–Z19 7–6 8–4 9–1 10–1

3–9 4–16 5–Z18 7–Z38 8–5 9–4

2–3 3–3 4–12 5–16 6–Z19 7–32 8–18 9–10 10–3
3–10 4–18 5–Z18 7–Z38 8–27 9–11 R/

M
2–3 3–10 4–18 5–32 6–Z44 7–16 8–12 9–3 10–3

3–11 4–27 5–Z38 7–Z18 8–18 9–10

4–19 5–21 6–14 7–Z17 8–19
5–Z37 6–Z44 7–21

R/
M

4–19 5–21 6–14 7–21 8–19
5–Z17 6–Z19 7–Z37

4–19 5–21 6–Z19 7–21 8–19 (S/M/R)
5–22 6–Z44 7–22

2–1 3–1 4–2 5–3 6–14 7–3 8–2 9–1 10–1 (S)
3–3 4–4 5–11 7–11 8–4 9–3

M
2–5 3–9 4–22 5–27 6–14 7–27 8–22 9–9 10–5 (S)

3–11 4–14 5–11 7–11 8–14 9–11
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Table A2 Bichromatic BIG chains

       Hanson/Eriksson 

                     IG chain: 2–6 3–5 4–9 5–7 6–7 7–7 8–9 9–5 10–6 (S)

3–8 4–25 5–15 7–15 8–25 9–8

2–6 3–5 4–5 5–7 6–7 7–7 8–5 9–5 10–6 (S)

3–8 4–16 5–15 7–15 8–16 9–8

2–1 3–1 4–5 5–5 6–5 7–6 8–5 9–4 10–1

3–5 4–6 5–7 6–Z38 7–7 8–8 9–5 10–5

M

2–5 3–9 4–16 5–14 6–18 7–20 8–16 9–4 10–5

3–5 4–6 5–7 6–Z6 7–7 8–8 9–5 10–1

R/(S)

2–1 3–4 4–8 5–20 6–18 7–14 8–16 9–9 10–5

2–5 3–5 4–16 5–7 6–Z38 7–7 8–6 9–5

M

2–5 3–4 4–8 5–6 6–5 7–5 8–5 9–1 10–1

2–1 3–5 4–5 5–7 6–Z6 7–7 8–6 9–5 4–9 5–7 6–5 7–7 8–9 (M)

5–19 6–18 7–19

3–1 4–1 5–4 6–Z41 7–7 8–9

4–5 5–5 6–5 7–19 2–6 3–5 4–13 5–19 6–Z12 7–15 8–25

M 3–10 4–18 5–Z36 6–Z17 7–28

3–9 4–23 5–29 6–Z41 7–7 8–9 R

4–16 5–14 6–18 7–19 4–25 5–15 6–Z41 7–19 8–13 9–5 10–6

R 5–28 6–Z43 7–Z36 8–18 9–10

4–9 5–7 6–Z12 7–14 8–16 9–9

5–19 6–18 7–29 8–23 4–6 5–7 6–Z12 7–15 8–25

M 5–Z36 6–Z17 7–28

4–9 5–7 6–Z12 7–4 8–1 9–1 R

5–19 6–5 7–5 8–5 4–25 5–15 6–Z41 7–7 8–6

5–28 6–Z43 7–Z36

3–9 4–16 5–24 6–22 7–24 8–22 9–9

4–22 5–30 7–30 8–16 R/

M

3–1 4–2 5–9 6–22 7–9 8–2 9–1

4–5 5–13 7–13 8–5

2–1 3–1 4–4 5–6 6–Z43

3–4 4–5 5–Z38 R
6–Z17 7–6 8–4 9–1 10–1

7–Z38 8–5 9–4
M

2–5 3–9 4–14 5–20 6–Z43

3–4 4–16 5–Z18 R
6–Z17 7–Z18 8–14 9–9 10–5

7–20 8–16 9–4

2–1 3–1 4–4 5–4 6–5 7–4 8–4 9–1 10–1 (S)

3–4 4–5 5–6 7–6 8–5 9–4
M

2–5 3–9 4–14 5–29 6–18 7–29 8–14 9–9 10–5 (S)

3–4 4–16 5–20 7–20 8–16 9–4
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Table A3 Octatonic BIG chains

3–5 4–9 5–19 7–19 8–9 9–5

Hanson/Eriksson/Buchler IG chain: 2–6 3–8 4–25 5–28 6–30 7–28 8–25 9–8 10–6 (S)

2–3 3–10 4–28 5–31 (S8) 7–31 8–28 9–10

4–Z15 8–Z15

3–5 4–Z29 5–19 7–19 8–Z29 9–5

2–6 3–8 4–12 5–28 6–30 7–28 4–12 9–8 10–6 (S/M)

3–10 4–27 5–31 (S8/M) 7–31 4–27 9–10

4–13 4–13

4–18 8–18

2–2 3–2 4–12 5–16 6–Z49

3–8 4–Z29 5–28 6–Z28 7–32 8–Z15 9–7 10–2 R

7–28 8–27 9–8

       M

2–2 3–7 4–27 5–28 6–Z49

3–8 4–Z15 5–32 6–Z28 7–16 8–12 9–2 10–2 R

R
7–28 8–Z29 9–8

2–4 3–3 4–12 5–10 6–Z23

3–8 4–Z15 5–28 6–Z45 7–25 8–27 9–8 10–4 R

7–28 8–Z29 9–11
      M

2–4 3–8 4–27 5–25 6–Z23

3–11 4–Z29 5–28 6–Z45 7–10 8–12 9–3 10–4 R

7–28 8–Z15 9–8

2–1 3–2 4–13 5–19 6–Z50

3–5 4–Z29 5–25 6–Z29 7–25 8–13 9–2 10–1 R

7–19 8–Z29 9–5

       M

2–5 3–5 4–13 5–10 6–Z13

3–7 4–Z15 5–19 6–Z42 7–10 8–13 9–5 10–5 R

7–19 8–Z15 9–7

  R

2–1 3–3 4–18 5–19 6–Z50       M

3–5 4–Z15 5–32 6–Z29 7–19 8–18 9–3 10–1 R

7–32 8–Z15 9–5
       M

2–5 3–5 4–18 5–16 6–Z13

3–11 4–Z29 5–19 6–Z42 7–16 8–18 9–5 10–5 R

7–19 8–Z29 9–11

2–6 3–8 4–12 5–26 6–21 7–26 8–12 9–8 10–6

3–10 4–27 5–28 6–34 7–28 8–27 9–10 (S/M) 4–9 5–7 6–Z12 7–15 8–25

5–19 6–Z17 7–28

2–6 3–5 4–13 5–Z36 6–Z12 7–15 8–25            R

3–10 4–18 5–19 6–Z17 7–28 4–25 5–15 6–Z41 7–7 8–9
             R 5–28 6–Z43 7–19

4–25 5–15 6–Z41 7–19 8–13 9–5 10–6

5–28 6–Z43 7–Z36 8–18 9–10 4–9 5–7 6–5 7–7 8–9 (S)

5–19 6–18 7–19

2–6 3–8 4–12 5–26 6–Z28

3–10 4–27 5–31           R
6–Z49 7–26 8–12 9–8 10–6

7–31 8–27 9–10
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Table A3 Continued

2–3 3–7 4–26 5–25 6–27 7–31(S8)

2–5 3–11 4–27 5–32 6–Z50
R

5–31 6–27 7–25 8–26 9–7 10–3

6–Z29 7–32 8–27 9–11 10–5

M

2–1 3–2 4–3 5–10 6–27 7–31(S8)

2–3 3–3 4–12 5–16 6–Z13 R
5–31 6–27 7–10 8–3 9–2 10–1

6–Z42 7–16 8–12 9–3 10–3

2–3 3–3 4–17 5–16 6–27 7–31 (S8)

2–4 3–11 4–18 5–32 6–Z49

R
5–31 6–27 7–16 8–17 9–3 10–3

6–Z28 7–32 8–18 9–11 10–4

2–2 3–2 4–10 5–10 6–27 7–31 (S8)

2–3 3–7 4–13 5–25 6–Z23
R

5–31 6–27 7–10 8–10 9–2 10–2

6–Z45 7–25 8–13 9–7 10–3

2–3 3–3 4–12 5–16 6–27(S8) 6–27 7–16 8–12 9–3 10–3

3–10 4–18 5–31 6–Z29 6–Z50 7–31 8–18 9–10

5–Z18 7–Z18

    M M R/S

2–3 3–10 4–27 5–32 6–27(S8) 6–27 7–32 8–18 9–10 10–3

3–11 4–18 5–31 6–Z42 6–Z13 7–31 8–27 9–11

5–Z38 7–Z38

2–3 3–7 4–13 5–29 6–Z29 6–Z50 7–29 8–13 9–7 10–3

3–10 4–27 5–31 6–27(S8) 6–27 7–31 8–27 9–10

5–25 7–25

    M M R/S

2–3 3–2 4–13 5–4 6–Z42 6–Z13 7–4 8–13 9–2 10–3

3–10 4–12 5–31 6–27(S8) 6–27 7–31 8–12 9–10

5–10 7–10

2–5 3–4 4–14 5–Z18 6–Z29 6–Z50 7–Z18 8–14 9–4 10–5

3–9 4–16 5–29 7–29 8–16 9–9
M M R

2–1 3–4 4–4 5–Z38 6–Z42 6–Z13 7–Z38 8–4 9–4 10–1

3–1 4–5 5–4 7–4 8–5 9–1

2–5 3–4 4–14 5–20 6–18 7–20 8–14 9–4 10–5

3–9 4–16 5–29 7–29 8–16 9–9 (S)
 M

2–1 3–4 4–4 5–4 6–5 7–4 8–4 9–4 10–1

3–1 4–5 5–6 7–6 8–5 9–1 (S)

2–1 3–1 4–4 5–6 6–Z43 7–6 8–4 9–1 10–1

3–4 4–5 5–Z38 7–Z38 8–5 9–4 (S)
M

2–5 3–4 4–14 5–20 6–Z43 7–20 8–14 9–4 10–5

3–9 4–16 5–Z18 7–Z18 8–16 9–9 (S)
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Table A4 Whole-Tone BIG chains

Hanson/Eriksson/Buchler IG chain:

2–2 3–6 4–21 8–21 9–6 10–2

2–4 3–8 4–25 5–33 6–35 7–33 8–25 9–8 10–4 (S)

2–6 3–12 4–24 8–24 9–12 10–6

4–21 5–9 6–21 7–9 8–21 2–2 3–6 4–21 5–33 (M)

5–33 6–22 7–33 2–4 3–8 4–24

S/M

4–21 5–24 6–34 7–24 8–21 4–25 5–28 6–21 7–28 8–25 (S/M)

5–33 6–22 7–33 5–33 6–34 7–33

4–24 5–30 6–22 7–30 8–24 3–8 4–12 5–26 6–21 7–26 8–12 9–8 (S/M)

5–33 6–34 7–33 4–27 5–28 6–34 7–28 8–27

S/M

4–24 5–13 6–21 7–13 8–24 3–12 4–19 5–13 6–21 7–13 8–19 9–12 (S/M)

5–33 6–22 7–33 4–24 5–26 6–22 7–26 8–24

5–30 6–34 7–30

4–24 5–26 6–21 7–26 8–24 (S/M)

5–33 6–34 7–33

3–6 4–2 5–8 6–21 7–8 8–2 9–6

4–21 5–9 7–9 8–21 (S)

M
3–6 4–22 5–24 6–34 7–24 8–21 9–6

4–21 5–34 7–34 8–22 (S)

3–6 4–11 5–9 6–22 7–9 8–11 9–6 (S/M)

4–21 5–24 7–24 8–21
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ABSTRACT

The notion that pitch-class sets might occupy some form of multi-dimensional
space has engaged a number of theorists over the years. The ‘space odyssey’ in
this article delves into several new issues, such as a methodology for the creation
of a comprehensive array of bonded inclusional growth chains, the formation of
a diatonic-to-chromatic, M5-induced spectrum of symmetrically arranged set
classes and a simple method for establishing levels of affinity between set classes.
These investigations lead to the advancement of a sixfold system of genera and
to hierarchical distributions of all set classes, furnishing a distinct shape or profile
to the whole set-class universe and to each of the genera. A productive way of
producing a three-dimensional model incorporating all set classes presents itself
if four foci, the ‘bichromatic’ 6–7 (0,1,2,6,7,8), hexatonic 6–20 (0,1,4,5,8,9),
octatonic 6–30 (0,1,3,6,7,9) and whole-tone 6–35 (0,2,4,6,8,10), are granted
their own spatial ‘homes’ at distant points on an M-invariant axis placed per-
pendicular to a diatonic 6–32 (0,2,4,5,7,9) to chromatic 6–1 (0,1,2,3,4,5) axis.
A transparent globe would seem to be the most suitable vehicle for the repre-
sentation of this arrangement, where the chromatic and diatonic foci take the
‘north’ and ‘south’ poles and the other four take their positions around the
‘equator’.

CORRECTION STATEMENT

Corrections added on 11 February 2013, after first online publication on 7th

January 2013: restoration of borders in Table 6; restoration of horizontal lines in
Table 9; restoration of vertical lines in Table 10; removal of volume and issue
numbers.
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